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ABSTRACT
Image generation has seen huge leaps in the last few years. Less
than 10 years ago we could not generate accurate images using
deep learning at all, and now it is almost impossible for the average
person to distinguish a real image from a generated one. In spite
of the fact that image generation has some amazing use cases, it
can also be used with ill intent. As an example, deepfakes have
become more and more indistinguishable from real pictures and
that poses a real threat to society. It is important for us to be vigilant
and active against deepfakes, to ensure that the false information
spread is kept under control. In this context, the need for good
deepfake detectors feels more and more urgent. There is a constant
battle between deepfake generators and deepfake detection algo-
rithms, each one evolving at a rapid pace. But, there is a big problem
with deepfake detectors: they can only be trained on so many data
points and images generated by specific architectures. Therefore,
while we can detect deepfakes on certain datasets with near 100%
accuracy, it is sometimes very hard to generalize and catch all
real-world instances. Our proposed solution is a way to augment
deepfake detection datasets using deep learning architectures, such
as Autoencoders or U-Net. We show that augmenting deepfake
detection datasets using deep learning improves generalization to
other datasets. We test our algorithm using multiple architectures,
with experimental validation being carried out on state-of-the-art
datasets like CelebDF and DFDC Preview. The framework we pro-
pose can give flexibility to any model, helping to generalize to
unseen datasets and manipulations.
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Figure 1: Four frames from the dataset CelebDF[23], from
the same moment in time, containing one real person (upper
left) and 3 deepfakes, resulted from changing the identity of
the person.

1 INTRODUCTION
In the era of technology, we can find information everywhere, as we
have access to almost every bit of data we desire, using the internet.
And while that is a good thing, we must not forget that not all the
data we see is curated to make sure it is accurate, real or it does not
cause any harm. In fact, while we can have a few credible sources
of information, the majority of information is posted without any
kind of verification of approval process. Therefore, it is only natural
that some of the information will eventually turn out to be fake - by
mistake or not. While the fight against fake information is ongoing
for a long time, there is a new kind of falsified information that we
must fight against: Deepfakes.

Deepfakes are images and videos, usually portraying people, that
have been manipulated in some way, using deep neural networks.
The introduction of Generative Adversarial Networks (GAN) [16]
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has sparked the evolution in image and video generation. GAN
generators can create deepfakes by using a loss function based
on an associated discriminator, that is specialised in detecting if a
generated image is real or not. Therefore, images from the generator
need to be extremely realistic to pass this test. Other very popular
deepfake generationmethods require switching identities using two
autoencoders: one encoder which learns to represent a first class,
and one for the second class. The creation of a deepfake involves
using the encoder for the first class and the decoder for the second.
These ideas inspired the creation of some open-source deepfake
generators, such as FaceApp [4] or FaceSwap-GAN [2].

At this time, generated images are so hyper-realistic that people
can no longer distinguish them with ease. As an example, as Figure
1 presents, we can compare 3 deepfake frames in which the identity
has been changed to a real image (upper left). If is almost impossible
to see which frame is authentic. Because of this, we can no longer
rely on a human’s attention to detect a deepfake.

The detection of deepfakes has been an increasingly important
subject in the last few years. Several deepfake detection methods
have been introduced, creating a great variety of solutions, such as:
finding localized artifacts in images, finding inconsistencies in fre-
quency or in physiological signals, deep convolutional approaches,
detecting temporal changes using time domain deep learning such
as LSTM [36] or Transformers [39] etc. While these methods are
capable of an almost perfect differentiation of deepfakes versus real
images, they all suffer from a common problem: it is extremely hard
to generalize. Therefore, while many deepfake detection algorithms
succeed on certain datasets, they do not yield good results when
evaluating on samples coming from other distributions.

In this paper, wewill be presenting a way to augment the training
dataset to increase generalization: using autoencoders to replicate
the image with a slight error. This way, we can add some noise or
frequency components to the image while maintaining its quality.
Furthermore, by doing this, we hope that the models would not
be learning to identify the deepfake generator’s "fingerprint" pat-
terns, as they would be changed by running the image through the
autoencoder models and therefore changing the image’s signature.

The remainder of this article is structured as following: Section 2
contains an overview of deepfake detection methods in the context
of generalization, Section 3 describes our augmentation approach
and the models used, Section 4 contains our training methodology,
architectures, attempts at data augmentation, results on multiple
datasets and a comparison with the state-of-the-art models. We
present our conclusions in Section 5.

2 RELATEDWORK
The idea of multimediamanipulation is not a new thing. In 1860, one
the first documented instances of photo manipulation took place:
the head of president Abraham Lincoln was manipulated to appear
on the body of politician John Calhoun. Over 100 years later, with
the introduction of digital photography and photo editing tools like
Adobe Photoshop, manipulating photos and faking content became
incredibly easy and accessible. While "photoshopped" images are
sometimes hard to discern from real ones, there are some techniques
like Error Level Analysis [41] that can detect objects inserted into
an image.

In the past, realistic media generation has been a challenge. Now,
with the help of deep learning, convolutional neural networks and
some state-of-the-art architectures like Generative Adversarial Net-
works, this challenge could be considered solved. Neural networks
are not only capable of generating realistic images and videos, but
also to determine if the image looks realistic enough or not. Perhaps
the most popular example of the realism in deepfakes is the video
of former President Barack Obama, created by Suwajanakorn et
al [34], in a paper which demonstrates the generation of mouth
movement in video frames to perfectly sync with an audio file.

Deepfake detection algorithms are essential to prevent the spread
of disinformation or blackmail. The state-of-the-art deepfake detec-
tion algorithms are very diverse, each focusing on another aspect
of this complicated problem. Furthermore, there are many open-
source datasets that aim to teach the models to detect deepfakes
in the worst and most diverse conditions. Lastly, perhaps the most
important thing is generalization: it is very important to explain
how we can make our models generalize better, against all kinds of
conditions.

The following topics are presented in this section: (i) the deepfake
detection datasets in the context of generalization, (ii) the state-of-
the-art deepfake detection approaches, (iii) approaches to improve
generalization.

2.1 Deepfake detection datasets
Today, deepfakes are more unrecognisable than ever before, and
most humans have a hard time differentiating between real and
fake videos. Because of that, the interest in detecting them has
grown significantly. There is an increasing need of data depicting
deepfakes, but as more and more deepfake generators are present,
the data suddenly is not the most important thing. Instead, the
algorithms are at least as important, as they can prevent overfitting
the data.

There are multiple deepfake detection datasets, the majority of
which being open-source and depicting real videos as well as falsi-
fied content. They usually involve people, have a short length of
under 1 minute and depict deepfakes generated by identity change
(using one person’s face on another person’s body), replicating the
facial expressions, movements, skin tones of the original frames.
The most commonly used datasets for deepfake detection are Face-
Forensics++ [31], CelebDF [23] and DFDC (from Facebook’s Deep-
fake Detection Challenge) [13] and its preview, DFDC Preview [14].

There are 3 generations of deepfake detection datasets, cate-
gorised by the realism of the deepfakes, number of videos, quality
of videos, number of different people in the videos, whether the peo-
ple participating were actors or non-consenting subjects or whether
the videos were staged or in the wild. The 1st generation of deepfake
datasets contain a small number of videos, of low quality, depicting
non-consenting subjects and uses fairly weak deepfake creation
algorithms. The 2nd generation of datasets provides an improve-
ment in the realism of the deepfakes, size of a few thousand videos
and, sometimes, consenting actors. Lastly, the 3rd generation of
datasets brings huge datasets, with over 100,000 videos, a bigger
diversity in the deepfake generation methods and consenting actors,
sometimes filmed in the wild. For the purposes of this paper, we
will focus on FaceForensics++ [31], a 1st generation dataset that
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contains 1000 real videos from YouTube and 4000 falsified videos,
created with 4 distinct algorithms: 1000 deep learning generated
identity swap videos [3] and 1000 videos generated with a public
FaceSwap software [1], 1000 videos generated with Face2Face [38]
and 1000 videos generated with Neural Textures [37]. We will also
evaluate our models on datasets like (i) CelebDF [23], a 2nd genera-
tion dataset, containing 890 real videos and 5639 deepfake videos
obtained from identity-swapping between 59 celebrities, with 10
different video scenarios for each celebrity and (ii) DFDC Preview
[13], a challenging dataset with a variety of scenarios.

2.2 Deepfake Detection Approaches
Deepfake detection methods are very diverse, with each one using
novel ways to highlight images and videos generated by neural
networks. They can, however, be categorized into the following:

• Methods focusing on convolutional networks, like [10, 20,
21, 31]. Many of these approaches do not employ a time-level
algorithm and focus on images.

• Methods focusing on low-level features. The most important
feature may be frequency [15, 24, 25]. It has been proven
that deepfake generators usually leave some kind of fre-
quency "fingerprint" [26, 42] on the images, and they can
be leveraged from a frequency spectrum. This detail may be
important for this paper, as we try to alter those fingerprints
using recreations of the image.

• Methods using image information, as well as a temporal
network to leverage inconsistencies in time. Papers like [11,
17, 44] use 3DCNN, LSTM or Transformers, as they can look
at video-level artifacts. Those approaches usually generalize
best, because deepfakes are most often generated at image-
level, and therefore are not always consistent in time.

2.3 Generalization in deepfake detection
The ultimate goal for deepfake detection algorithms is for them
to be used in the wild, with a reasonable accuracy. The problem
is that many of the algorithms mentioned above can learn to de-
tect deepfakes from one dataset very well, but fail to detect them
on other datasets. Therefore, the focus of the deepfake detection
community recently has been the models’ ability to generalize to
unseen manipulations.

As many of the current state-of-the-art detectors fail when con-
fronted with unseen manipulations, it is a good idea to look at some
of the ones that perform better.

One of the most recent and best performers when it comes to
generalization is LipForensics [18]. The model architecture starts
from a pretrained lip reading neural network for a feature extractor
and temporal network, also trained on lip reading. LipForensics
looks at only the lips in a deepfake manipulation, as if was origi-
nally trained to read lips. In spite of that, using temporal models
to detect inconsistencies in the lip movements is one of the best
methods to detect deepfakes. LipForensics is also very good at deal-
ing with many unseen corruptions, like Saturation, Contrast, Noise,
Compression etc.

Another approach that generalizes is Face X-ray [22]. It is based
on the presumption that every generated face is blended on the

original face, therefore the image must must contain blending arti-
facts. Face X-ray reveals the boundaries between the original image
and the pasted blended image.

In [32] we also see an approach that focuses on the image blend-
ing: by repeating the blending process, you can recreate statistical
inconsistencies or color artifacts. Basically, it simulates the image
blending in all situations. This approach also has a very high level
of generalization, as it is based on the weakest point of the current
deepfake detection datasets: the blending.

A method that explores the temporal coherence is presented in
[44]. By using a 3DCNN architecture for groups of frames, along
with a temporal Transformer, this paper achieves a very high gener-
alization on multiple datasets. The reason for this is that deepfakes
are not usually generated with time consistency in mind. More
than that, even when they are, deepfake generators have a very
hard time maintaining that image consistency across hundreds or
thousands of frames.

As a conclusion, the methods that generalize most do so by
using either the temporal domain artefacts and inconsistencies or
by exploiting the artefacts resulting from the one common element
that most deepfakes share: the blending of the generated image.

3 PROPOSED METHOD
In this section, we present our approach aimed at increasing gener-
alization: augmenting the training datasets with images generated
by deep learning, like Autoencoders or U-Net. We will present our
augmentation pipeline, architectures used and a few reasons why
this method could improve deepfake detection algorithms.

The motivation for this paper started from papers like [26, 42],
that analyse generated images from the frequency standpoint. Here,
we can see that certain operations applied on images, like upsam-
pling, leave some kind signature in the frequency spectrum. More
than that, it has been shown that certain deep neural network ar-
chitectures like GANs can leave some frequency fingerprints that
are visible on the frequency spectrum of the image.

One of the biggest problems with some of the current deepfake
detectors is that they learn certain representations from the training
data, but fail to generalize to deepfakes generated by other models.
It is very reasonable to conclude that they must learn certain "sig-
natures" of the training data that does not apply in other kinds of
deepfakes. Therefore, it would be beneficial if we could somehow
hide these signature patterns in the images, so that the deepfake
detector models could learn from other sources, in the hope that
they would generalize better. The data augmentation technique
presented in this paper aims to achieve exactly that.

The proposed idea of this work is trying to augment the dataset
to try to eliminate model-specific patterns from deepfakes. We do
that by augmenting the dataset with the help of a multitude of other
other image generators. The biggest question here is: how can we
generate new realistic deepfake pictures and be sure that they are re-
alistic enough, while not actually using new data? Our idea is using
deep neural networks like Autoencoders or U-Net to recreate the
images in the train dataset. This way, if the autoencoders are good
enough, they will create an image that is indistinguishable from the
original, but the patterns in that image will be influenced by the
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Figure 2: Our proposed training algorithm with autoencoder-based augmentation. It is composed of the following elements: (i)
FaceForensics++ frames as an input, (ii) Cropping the facial region and eliminating the background using facial landmarks from
OpenFace2 [8], (iii) Adding a random perturbation to the image, with each one having an equal chance of applying, including
no change in the frame, (iv) Passing the image through a pretrained autoencoder network from a multitude of pretrained
models (Autoencoders, U-Net), including an option to skip this step, (v) Passing the resulted image through a deepfake detection
model, in this case XceptionNet, to train it, (vi) the model trains for multiple epochs on all the augmented training data and is
able to output a decision

autoencoder’s architecture. Therefore, the original image’s finger-
print may be changed or altered. The idea is that the autoencoders
should not recreate the image perfectly. Some error is expected,
but it should not be too large, as they should not generate unrealis-
tic images. The errors might actually benefit the learning process,
similar to classic data augmentation like adding noise, blurring
etc. More than that, the addition of new deep learning fingerprints
to the image can help with generalization. In order to make sure
that the deepfake detector network would not just learn the new
image fingerprint from the autoencoder, we decided to use multiple
models to augment the data. This way, if there are enough models,
there would be enough variety in the images. Lastly, we want to
make sure that we would also augment the training dataset the
normal way, so we add noise, color, perspective changes, rotation,
blur, sharpening to the images randomly.

Figure 2 presents our proposed data augmentation and training
algorithm. It consists of the following elements:

• The training dataset in FaceForensics++. Random frames
from each video are selected and used in training. To ensure
that the neural network focuses on the face, we eliminate
the background and crop the facial region using facial coor-
dinates from the open-source software OpenFace2 [8]. The
frames are resized to 3 × 299 × 299.

• A random perturbation is added to the image to augment
the training dataset. The possible perturbations are: Ran-
dom noise, Blur, Sharpening, Random Crop, Random Affine
Transform, Color Jitter (changes in Hue, Saturation, Bright-
ness), Random Rotation. It is also possible for the photo to

go through this step without being affected by a random per-
turbation. We tested adding these perturbations both before
and after passing the photo through the autoencoders and
the results were similar.

• A randomly selected pretrained autoencoder. These neural
networks were trained to output the same image that was
used as an input, but with a few small differences. The autoen-
coders were trained using random images from DFDC [13]
(the complete dataset, not the Preview Dataset). They get an
image as an input and are trained to output the same image,
but with a Average Mean Absolute Error greater than 3%.
This means that the output image would always be slightly
different from the input, adding a new layer of noise. There
are a lot of architectures used for the autoencoders and they
will be described in detail in the next chapter. The architec-
tures are a mix of convolutional autoencoders and U-Net [30]
architectures. We use wide autoencoders and U-Net because
it is our interest that the models output a similar image as
the input without struggling to do so. Because U-Net archi-
tectures output the same image as the input, they can also
be considered to be autoencoder architectures for this task.
It is also possible for the image to skip this step, randomly.

• A convolutional neural network is trained for the deepfake
detection algorithm. We selected 3 architectures for this
test: XceptionNet [9], Capsule Networks [27, 28, 33] and
EfficientNet B4 [35].

The benefits of adding the random autoencoding step are:
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• Because the autoencoders are not perfect and the output
images are at least 3% different, this step is in itself a noise
source that augments the dataset. More than that, colors,
shapes or even pixel structures can vary as a result of using
these autoencoders.

• Because we use multiple autoencoder architectures, there
will be a lot of variation in the outputs. Some architectures
are very big andwill output images that are not very changed,
while others are small and will sometimes struggle to output
a similar frame.

• Each autoencoder will leave a different "fingerprint" on the
image, due to the diversity in architecture, size, training
paradigm. Therefore, any deepfake fingerprints from the
training dataset will be altered in a different way, resulting
in the model struggling to learn from the fingerprint alone
and overfit, as they will be very diverse.

• Although there can be some perturbations that can be seen
with the naked eye in some of the worst-performing models,
these can help the deepfake detectors learn as well.

• The real training data is also passed through these autoen-
coders. Therefore, the real data will also exhibit some finger-
print specific to those architectures, similar to the deepfakes.
Deepfake detectors will not be able to learn the autoencoder-
specific patterns because the patterns will also be present in
the real data. More than that, the real data is usually from
the internet, like Youtube. Therefore, it has been compressed
in some way and it has some compression artifacts, which
the detector can learn. This does not help with overfitting,
as different compression algorithms will affect the image
differently.

A potential weakness of this method is that it is frame-level and
does not consider the temporal dimension. More on that will be
elaborated in the following chapter.

4 EXPERIMENTAL RESULTS
This chapter contains details regarding the experimental results.
We will outline the performance improvements of our algorithm.
comparing it to the state of the art. More than that, we will draw
conclusions regarding the effectiveness of the augmentation algo-
rithm and also its weaknesses.

4.1 Datasets and evaluation
For training, we used FaceForensics++ [31]. This is a dataset con-
taining 1000 real videos and 4000 fake videos, generated using 4
different generation algorithms: Face2Face (F2F), FaceSwap (FS),
Deepfakes (DF) and NeuralTextures (NT). We will be using the
slightly compressed version of this dataset (HQ). This dataset is
one of the most easy in the state of the art, containing many videos
that are very distinguishable as being deepfakes.

Contrasting to that, we will be evaluating on datasets that have
videos that are much harder to identify for humans: CelebDF - a
dataset with videos generated from Youtube clips of actors and
DFDC Preview - a preview dataset for a competition that has a
lot of harder videos, compression, different angles, noise or resolu-
tions. We follow the train-test splits for the evaluation and training
datasets.

For evaluation, we use the AUC-ROC score, as it is a binary
classification problem. AUC measures how well the model can
differentiate between real and fake samples, at different thresholds.
The evaluation for one video clip will be made by averaging the
outputs for all its frames.

We also implemented the same algorithms, but without the ran-
dom autoencoder step, for comparison.

Figure 3: Frames produced by the Autoencoder and UNet
models. The original frame is upper left.

4.2 Autoencoder architectures
We trained several autoencoder/U-Net architectures with the aim
to augment the training dataset. Below are some details regarding
every state-of-the-art architecture used:

• AE1 - basic autoencoder architecture. We used multiple
variations with different convolution kernels(3x3, 5x5, 9x9),
upsampling techniques (ConvTranspose2d, Bilinear upsam-
pling, Bicubic upsampling, Nearest upsampling), and differ-
ent number of image features for encoding (1024 × 9 × 9
features = less than 4 times the number of features than the
original frame (299 × 299 × 3), or 1024 × 18 × 18 features =
more features than the original image). Absolute difference
between input or output can be up to 20%.

• AE2 - basic autoencoder, using a smaller number of upsam-
pling / downsampling layers and less filters. We used mul-
tiple variations with different convolution kernels(3x3, 5x5,
9x9), upsampling techniques (ConvTranspose2d, Bilinear up-
sampling, Bicubic upsampling, Nearest upsampling), and
different number of image features for encoding (512 × 9 × 9
features = less than 7 times the number of features than
the original frame (299 × 299 × 3), or 256 × 18 × 18 features
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= 3 times less features than the original image). Absolute
difference between input or output can be up to 25%.

• UNet1 - basic U-Net architecture, inspired from the origi-
nal paper [30]. Can use Transpose Convolutions, Bilinear
upsampling or Bicubic upsampling. Can use different size
convolution kernels and a variable number of layers. All
UNet architectures below are varied similar to this one.

• Double Unet - double UNet architecture [6, 19], inspired
from the original architecture. We use both outputs from the
U-net in data augmentation.

• UNet2 - basic U-Net architecture, implemented from [6].
• R2U_Net - Recurrent Residual Convolutional UNet [6, 7]
architecture.

• AttU_Net - Attention UNet [6, 29] architecture.
• R2AttU_Net - Residual Recurrent Block with attention Unet,
implemented in [5, 6].

• NestedUNet - Unet++ implementation [6, 45].
• DictUNet - Easy to run UNet implementation with Python
dictionaries [6].

We trained the autoencoders in epochs of 2000 random frames
from different videos from the full DFDC [13] dataset, preprocessed
as explained above (face cropping, background elimination, resizing
to 3 × 299 × 299). We picked the epoch where the L1 loss was the
smallest but over 3% and at least another epoch with bigger loss.
That way, we have models that output almost the same image and
models that output a slightly changed version. The autoencoders
were also trained with 2 different loss functions: L1 loss and MSE
(Mean Square Error) loss.

Figure 3 presents the difference between autoencoder/UNet out-
puts. Some of the outputs are very high quality (top row) and are
basically indistinguishable from the real image. Others differ in
some small way (middle row), like some color difference in the
skin tone or some differences in the edges of the face. The last row
contains models that produced some of the biggest differences from
the original. Those can be seen as artifacts, blurry images or a total
color shift.

In spite of the differences, all the images are somewhat credible
and can be used in data augmentation.

4.3 Training, data augmentation and
hyperparameters

We trained 3 deepfake detection models: XceptionNet, Capsule
Networks and EfficientNetB4. All the models were pretrained on
ImageNet [12]. We used the HQ variant of the FaceForensics++
training dataset, which contains a little compression, and 5 types
of data augmentation:

(1) No data augmentation whatsoever
(2) Only basic data augmentation, like blurring, noise, color

jitter etc
(3) Data augmentation with 8 basic autoencoder models (2x AE1,

2xAE2, 4x UNet1), as presented in Figure 2
(4) Data augmentation with all the models mentioned above,

one model per architecture, as presented in Figure 2
(5) Data augmentation with with all the models mentioned

above, multiple models at different epochs and multiple loss
functions per architecture, as presented in Figure 2.

Table 1: Comparison of generalization for models trained
FaceForensics++ and evaluated on CelebDF, with different
levels of data augmentation

Method CelebDF
AUC [%]

Xception - basic aug (2) 68.96
Xception - AE aug (3) 73.67
CapsNet - basic aug (2) 64.32
CapsNet - AE aug (3) 70.4

EfficientNetB4 - basic aug (2) 66.93
EfficientNetB4 - AE aug (3) 75.85

(6) Data augmentation with with all the models mentioned
above, multiple models at different epochs and multiple loss
functions per architecture, but without also using basic data
augmentation like blurring, noise, color jitter etc.

We use a Dropout value of 0.25 and a small weight decay of
0.0003 to prevent overfitting. We normalize the data to mean=[0.5,
0.5, 0.5] and std=[0.5, 0.5, 0.5].

All the experiments were run on a machine with an Nvidia 3090
24GB graphics card and 32GB RAM.

4.4 Experimental results
All models achieved over 99% AUC on the test dataset of FaceForen-
sics++ in all augmentation conditions. Therefore, the next logical
step is to evaluate the generalization, as that is the focus of this
work.

Table 1 presents a comparison between our models with 2 differ-
ent types of data augmentation: (2) Only basic data augmentation
and (3) Data augmentation with 8 basic autoencoder models, focus-
ing on generalization to an unseen dataset (CelebDF). All models
were trained on FaceForensics++, in all data augmentation settings.
Table 1 shows that using autoencoder-based data augmentation
can increase generalization to an unseen dataset by almost 10%.
Although the CapsNet architecture achieves the best results on
FaceForensics++, it overfits the dataset and does not generalize
well. Due to the fact that the rest of our experiments proved that
CapsNet models tend to overfit the data more, we excluded this
model from further experiments.

Table 2 presents a comparison of performance of the XceptionNet
model with different levels of augmentation, presented in Subsec-
tion 4.3. As we can see, adding more models increases the perfor-
mance of the models. This happens up to a point, as adding more
models than in Full AE aug (5) proved to be unfruitful. We can
see that using no data augmentation overfits the data, making it
impossible to generalize. A basic data augmentation only increases
generalization by under 5%. By using the first level of autoencoder
data augmentation, we get an increase in performance of over 5%.
By using over 40 total models with the augmentation (4), we achieve
an over 80% AUC on CelebDF. Doubling the number of models to
80 - augmentation (5) does not increase performance by much.
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Table 2: Comparison of generalization for models trained
FaceForensics++ and evaluated on CelebDF, with different
levels of data augmentation

Method CelebDF
AUC [%]

Xception - no aug (1) 64.55
Xception - basic aug (2) 68.96
Xception - AE aug (3) 73.67
Xception - AE aug (4) 80.73

Xception - Full AE aug (5) 82.62
EfficientNetB4 - Full AE aug (5) 82.87

Xception - AE aug (6) 80.61

Table 3: Comparison of generalization for models trained
FaceForensics++ and evaluated on CelebDF and DFDC Pre-
view, compared to other state-of-the-art approaches

Method CelebDF
AUC [%]

DFDC
Preview
AUC [%]

LipForensics [18] 82.4 73.5
Face X-Ray [22] 79.5 65.5

3D R50-FTCN [44] 86.9 74.0
Xception [31] 73.7 70.9
CNN-aug [40] 75.6 72.1
PCL + I2G [43] 90.03 74.37

EFNB4 + SBIs [32] 93.18 86.15
Ours - Xception Full AE aug (5) 82.62 71.52

Ours - EfficientNetB4 Full AE aug (5) 82.87 72.6

Using autoencoders to augment the datasets ultimately helps
with generalization, achieving results almost 14% bigger compared
to using only basic data augmentation techniques.

Table 3 presents the performance of our best models - Xception-
Net with augmentation (5) and EfficientNetB4 with augmentation
(5), compared to the state of the art. Our models outperform many
state-of-the-art approaches like LipForensics [18], Face X-Ray [22]
or CNN-aug [40]. However, out method falls short of best per-
formance, with 2 methods outperforming it. What is essential to
remember is that out method can easily be combined with other
approach. More than that, some of the methods presented also use
the temporal dimension, an approach that we have not yet tried
and one that can improve performance even further.

The results in Table 4 present our model’s performance against
4 types of unseen manipulation: Color Jitter (brightness between
0.5 and 1.5, saturation between 0.5 and 1.5, hue between -0.1 and
0.1), Random Rotation between 10 and 30 degrees, Random Affine
Transform (rotation between 10 and 40 degrees, scaling between
50% and 100% and translation between 10% and 30% of the image’s
size) and Gaussian Blur (3x3 kernel size, sigma between 20 and 25).
The results show that out model is very invariant to changes in the

Table 4: Comparison of generalization for XceptionNet,
trained on FaceForensics++ using only the autoencoder aug-
mentation, without basic data augmentation. Evaluation on
CelebDF.

Method Perturbation CelebDF
AUC [%]

Xception Full AE aug (6) Color Jitter 79.44
Xception Full AE aug (6) Random Rotate 78.52
Xception Full AE aug (6) Random Affine 72.58
Xception Full AE aug (6) Gaussian Blur 82.45

image, as our model that is trained only on data augmented with
autoencoders is able tomaintain a performancewithin 2% versus the
case where data is not perturbed for 3 types of perturbation (Color
Jitter and Random Rotate) and drops less than 8% in performance
against some very aggressive affine transforms. What is interesting
is that we actually managed to increase the performance of our
model when it deals with blurred images, compared to normal
images.

4.5 Discussion
From the results presented above, we can draw the conclusion
that augmenting the data with deep learning models increases the
model’s ability to generalize. More than that, we concluded that
using a bigger number of autoencoder/UNet models resulted in
increased performance, up to a point.

From our testing, the quality of the autoencoder models did not
affect the performance of the deepfake detectors very much, as
it remained more or less the same even when running the same
experiments without the worst models.

One drawback of this augmentation technique is that we can
only apply it on stationary frames. We tried using temporal net-
works like LSTM or Transformer together with features from the
XceptionNet model and the results did not exceed just averaging
the outputs for each individual frame. For this to be possible, the
data augmentation must be done by 3D CNN models, so that it
would also incorporate the changes in time. Without that, there
were sometimes inconsistent artefacts in time for the frames.

Although our method did not achieve state-of-the-art perfor-
mance, it is important to note that this technique can be used
together with other ideas very easily.

5 CONCLUSION
This paper introduces a new method of data augmentation that
aims to increase generalization. This method uses neural networks
to try to generate slightly different images from the training dataset.
The autoencoder neural networks add some kind of variation or
noise and may hide the frequency signature of deepfake generators
as it passes the image through another neural network. We tested a
number of architectures and models for autoencoders, like convolu-
tional neural networks and UNet architectures. When augmenting
the training data using our method, we saw a significant increase in
the generalization ability of our deepfake detection models. More
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than that, the models became very invariable to different kinds of
perturbations. Although our method does not achieve state-of-the-
art performance, it has the advantage that it can be used together
with any models to augment their performance.

Lastly, we wish to improve this method in the near future, aiming
at augmenting temporal data and finding the right level of error for
which this autoencoder augmentation technique produces the best
results.
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