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Abstract

Neurodegenerative diseases have shown an increasing incidence in the older pop-
ulation in recent years. A significant amount of research has been conducted to
characterize these diseases. Computational methods, and particularly machine
learning techniques, are now very useful tools in helping and improving the di-
agnosis as well as the disease monitoring process. In this paper, we provide an
in-depth review on existing computational approaches used in the whole neu-
rodegenerative spectrum, namely for Alzheimer’s, Parkinson’s, and Hunting-
ton’s Diseases, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy.
We propose a taxonomy of the specific clinical features, and of the existing
computational methods. We provide a detailed analysis of the various modal-
ities and decision systems employed for each disease. We identify and present
the sleep disorders which are present in various diseases and which represent an
important asset for onset detection. We overview the existing data set resources
and evaluation metrics. Finally, we identify current remaining open challenges
and discuss future perspectives.
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1. Introduction

Neurodegenerative diseases are a class of neurological disorders where neu-
rons from the central nervous system die or are damaged causing severe disabili-
ties, and eventually death. They are typically encountered in old age. However,
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disease onset might appear earlier. In the past years, their incidence increased
significantly and it is expected that the increase will continue, as the world’s
population ages [1]. Neurodegenerative diseases are problematic and can be-
come a burden since their cause is unknown and no cure has been discovered.
Treatments are currently targeting the alleviation of symptoms. Due to recent
advances in artificial intelligence, a significant help can come from the computa-
tional approaches targeting diagnosis and monitoring, e.g., detection of disease
onset, characterization of the disease, improvement of the differential diagno-
sis, quantification of the disease progression, tracking of the medication effects.
These tasks can be automated or at least improved with the help of machine
learning algorithms.

Scope and target of this work. In this context, the present study proposes
an in-depth, large scale, analysis of the existing artificial intelligence capabil-
ities in support of the diagnosis and analysis of the main neurodegenerative
diseases. Although a large number of neurodegenerative diseases can be de-
fined [2], we target the ones with the highest prevalence and representative
of the neurodegenerative spectrum, namely: Alzheimer’s Disease, Parkinson’s
Disease, Huntington’s Disease, Multiple System Atrophy, and Amyotrophic Lat-
eral Sclerosis. To retrieve the existing literature, a total of 46 keywords were
used, ranging from ”neurodegenerative medical devices”, ”handwriting parkinson
detection”,”huntington disease machine learning” to ”alzheimer brain imaging
machine learning”. These included combinations of the disease names, symp-
toms and analysis methods. The publications were selected based on the rel-
evance attributed by the scholar.google search engine, focusing on the most
impacting and recent publications. All articles that did not include computa-
tional methods or the target keywords were excluded. A summary of the article
pool is presented in Figure 1. Overall, we reviewed more than 450 articles. As
the graph shows, there is an increasing interest for this topic, which is triggered
not only by recent advances in deep learning but also by the promising results
achieved so far. Other review works on specific neurodegenerative diseases or
specific symptoms are also available. Our study goes beyond prior works by pro-
viding a general view of existing capabilities in the field rather than focusing on
particular disease cases. For the completeness of our work, the reader is referred
to existing reviews of the literature each time a relevant study is available.

Overview of our contributions. The main contributions of this study can
be summarized with the following: (i) we provide a global review on existing
computational approaches used in the whole neurodegenerative spectrum, (ii)
we identify and synthesize a general taxonomy of neurodegenerative disorders,
(iii) after analyzing current trends, we propose a taxonomy for computational
approaches, (iv) we provide a detailed analysis of the various modalities and de-
cision systems employed for each disease, (v) we identify and present the sleep
disorders which are present in various diseases and which represent an impor-
tant asset for onset detection, (vi) we identify and present the most prominent
datasets available for building computational systems together with the evalu-
ation methodologies, and finally (vii) we identify the main capabilities as well
as the remaining open questions to be solved by upcoming developments.
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Previous resources. Several previous reviews on similar topics have been
identified. For Alzheimer’s disease, the reader is referred to: Laske et. al [3] for
a review on the different methods available for diagnosing AD, Cassani et. al [4]
for a review on differentiating stages of AD progression using resting-state-EEG,
Bhat et. al [5] presents the recent research performed on automated EEG based
diagnosis of AD, Maestu et. al [6] for a review on MEG and EEG biomarkers
for AD, Zhang et. al [7] for a review on methods for identifying MCI and AD,
the conversion from MCI and the progression of AD, Alberdi et. al [8] for a
review on methods for monitoring AD in an unobtrusive way, Pellegrini et. al
[9] for a review on machine learning techniques used in neuroimaging for de-
mentia and MCI, Davatzikos et. al [10] for a brief overview of machine learning
in neuroimaging. For Parkinson’s disease, the reader is referred to: Keijsers et
al. [11] for a review on the use of wearable movement sensors for PD detection
and severity prediction, van Rooden et al. [12] for a review of identification of
PD’s subtypes via cluster analysis, Ahlrichs et al. [13] for a review of machine
learning approaches for recognizing PD motor symptoms, Stenis et al. [14] for
a review of wearable accelerometry-based technology for PD rehabilitation pur-
poses, Pasluosta et al. [15] for a review of existing wearable technologies and the
Internet-of-Things concept in support of PD diagnostics and treatment, Kub-
ota et al. [16] for a nontechnical tutorial review of relevant machine learning
algorithms for large-scale wearable sensor data in PD, Cummins et al. [17] for a
review of speech analysis for health in general that includes also dysarthic PD
speech, and Impedovo et Pirlo [18] for a review of dynamic handwriting analysis
via pattern recognition for the assessment of neurodegenerative diseases, includ-
ing PD. In contrast to previous work, apart from presenting the latest methods,
we focus on a more general perspective, addressing all modalities and compu-
tational approaches in an interconnected way, while investigating the current
capabilities of the algorithms. For Huntington’s disease, there are currently no
review publications with a specific focus on the technical aspects of diagnosis or
monitoring. Several publications provide an overview of the methods available
for analysis and detection of different gait abnormalities in either neurological
or human movement disorders, including HD: Orru et. al [19] provides a review
of the different uses of SVM for the identification of imaging biomarkers for
neurological diseases in MRI, PET or DTI scans, Figueiredo et. al [20] inves-
tigates also the use of SVM, but for identifying gait patterns in human motor
disorders, Moon et. al [21] provides a systematic overview of evidence for gait
variability in neurodegenerative diseases such as: AD, ALS, HD and PD. For
the Amyotrophic Lateral Sclerosis, there is a relative sparsity in computational
methods developed and we have identified a single overview providing informa-
tion on dysarthia in ALS. Tomik et. al [22] analyse both clinical symptoms
and the technical methods used for the differential diagnosis based on acoustic
features. The current work goes beyond these aspects for a more updated and
broader analysis. For Multiple System Atrophy, there are currently no prior
literature reviews on the computational techniques used in its monitoring and
diagnosis. This holds also for REM sleep behaviour disorder where no overview
articles dealing with the computational approaches are available. For restless
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Figure 1: Number of considered publications for this review distributed over the publication
years.

legs syndrome and periodic limb movement, a systematic review was published
by Plante [23] on the use of leg actigraphy for periodic limb movements. In
contrast, the current study reviews up-to-date current technology and broader
implications on the study of neurodegeneration.

Abbreviations. Throughout the entire paper we will use the following abbre-
viations (by alphabetic order): AD — Alzheimer’s Disease, ANN — Artificial
Neural Network, ALS — Amyotrophic Lateral Sclerosis, AUC — Area Under
the Curve B — Bradykinesia, CNN — Convolutional Neural Networks, CNS
— Central Nervous System, CV — Cross-Validation D — Dyskinesia, DBS
— Deep Brain Stimulation, DCNN — Deep Convolutional Neural Networks,
DLB — Dementia with Lewy Bodies, DNN — Dynamic Neural Networks, DTI
— Diffusion Tensor Imaging, ECG — Electrocardiogram, EEG — Electroen-
cephalogram, EMG — Electromyography, EOG — Electrooculogram, ERP —
Event Related Potentials, FoG — Freezing of Gait, H&Y — Hoehn and Yahr
Scale, HC — Healthy Controls, HD — Huntington’s Disease, HMM — Hidden
Markov Models, ICA — Independent Component Analysis, kNN — k-Nearest
Neighbours, LASSO — least absolute shrinkage and selection operator, LDA —
Linear Discriminant Analysis, LOO — Leave One Out, LSTM — Long Short
Term Memory, MCI — Mild Cognitive Impairement, MRI — Magnetic Reso-
nance Imaging, MSA — Multiple System Atrophy, PCA — Principal Component
Analysis, PD — Parkinson’s Disease, PET — Positron Emission Tomography,
PNN — Probabilistic Neural Network, PSP — Progressive Supranuclear Palsy,
PSG — Polysomnography, REM — Rapid Eye Movement, RBD — REM Sleep
Behavior Disorder, RF — Random Forest, RLS — Restless Legs Syndrome, ROC
— Receiver Operating Characteristic, SPET — Single Photon Emission Tomog-
raphy, SVM — Support Vector Machine, SVR — Support Vector Regression, T
— Tremor, UPDRS — Unified Parkinson’s Disease Rating Scale.

The remainder of this article is organized as follows. Section 2 presents the
relevant definitions and proposes a taxonomy for this review, from both the
medical and computational point of view. Further on, each subsequent section
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deals with the computational approaches encountered for specific neurodegener-
ative diseases representating a specific category of neurodegeneration. Section 3
looks into Alzheimer’s disease. Section 4 reviews Parkinson’s Disease. Sec-
tion 5 analyses Huntington’s Disease. Section 6 and 7 deal with Amyotrophic
Lateral Sclerosis and Multiple System Atrophy respectively. Section 8 reviews
the techniques used for detecting and monitoring sleep disorders encountered
in multiple neurodegenerative disorders. Section 9 provides a summary of the
datasets and evaluation methods used in testing the majority of the computa-
tional approaches presented. Section 10 concludes the review and identifies gaps
and future challenges for the field.

2. Definitions and Taxonomy

In this section, we propose a taxonomy for the existing computational ap-
proaches for neurodegenerative diseases, both from the medical and computa-
tional perspectives. Section 2.1 defines the prominent neurodegenerative dis-
orders along with their symptoms. Section 2.2 discusses the various theories
adopted in the literature for the categorization of neurodegeneration and pro-
poses a taxonomy. Section 2.3 defines a taxonomy for the computational ap-
proaches highlighting their purpose, the monitored disease and clinical features,
along with the data modality used for analysis and diagnosis. Neurodegener-
ative diseases can be regarded as a class of neurological disorders that imply
the progressive loss of neurons or subsets of neurons from specific functional-
anatomical areas of the CNS [24, 2]. We exclude here the neurological diseases
caused by traumas at the level of the CNS. As neurodegeneration can affect
many types of neurons and functional areas, their symptomatology is diverse
and many different diseases can be defined. Their classification is however con-
troversial as a significant number of symptoms overlap.

2.1. Definitions

Alzheimer’s Disease is a progressive age-related neurodegenerative disease
characterized by the accumulation of amyloid plaques (beta-amyloid protein
mixture), neurofibrillary tangles (clumps of tau proteins) and a severe loss of
connections between neurons responsible for memory and learning [25]. Symp-
toms appear initially as mild memory impairments which can also be confounded
with age related memory losses. These progress into severe memory impairments
leading up to personality changes, language difficulties, motor difficulties, delu-
sions and hallucinations [26]. Diagnostic criteria include the presence of AD
biomarkers assessed through MRI or PET images along with an assessment of
dementia symptoms and the degree of cognitive impairment [27].

Dementia with Lewy Bodies is caused by the accumulation of Lewy
bodies (clusters of alpha-synuclein protein) inside the nuclei of neurons from
the cerebral cortex and basal ganglia [25]. Since both neurons involved with
memory function and motor control are affected, the clinical symptoms of DLB
are very similar to the dementia symptoms of AD and the abnormal movements
encountered in PD.
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Parkinson’s Disease is a motor disorder characterized by the loss of dopamine
producing neurons through the accumulation of alpha-synuclein proteins. The
main clinical characteristics include resting tremor, bradykinesia (a slowing of
movements), muscle rigidity, gait and postural disturbances, sleep disorders,
tiny handwriting and difficulties when speaking or swallowing [25, 26]. A cure
for the disease has not been discovered and current treatments focus on allevi-
ating the symptoms, either through medication, physical therapy or deep brain
stimulation. Two severity rating scales are used predominantly in medical prac-
tice: Movement Disorder Society - Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [28] - rating based on behavior and mood, activities of daily
living, motor tasks and therapy effect; Hoehn and Yahr Scale [29] - rating based
exclusively on gait and posture impairments.

Multiple System Atrophy is a progressive neurodegenerative disease that
affects multiple areas of the brain and spinal cord responsible with the coordina-
tion of the autonomic nervous system [25, 26]. As DLB and PD, it is also linked
to the accumulation of alpha-synuclein but in this case in the glia cells. Symp-
toms include bradykinesia, impaired speech, orthostatic hypotension, bladder
control problems, abnormal sweating and sleep disorders.

Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease
that affects motor neurons. Muscles begin to atrophy as their control is no longer
possible. The incipient phases of ALS usually affect the limbs and symptoms
rapidly progress to other parts of the body. In the final phase of the disease,
the muscles controlling the respiratory system begin to weaken. Death usually
occurs within 3 to 5 years from disease onset due to respiratory failure. The most
relevant clinical features include: severe motor impairments, muscle twitches,
speech impairments, difficulties swallowing [25, 26].

Huntington’s Disease is an inherited progressive neurodegenerative dis-
ease characterized by a mutation in the huntingtin gene that causes motor
neurons controlling voluntary movements to die [25, 2]. The symptoms in-
clude chorea (uncontrolled movements), abnormal body postures, speech im-
pairments, changes in behavior, emotion, judgment and cognition. Death occurs
10 to 30 years after disease onset. The diagnosis is based on genetic testing and
neuroimaging techniques.

2.2. Taxonomy of neurodegenerative diseases

When placing a diagnosis, medical professionals take into account the pre-
dominant clinical symptomatology, the topography of the neurodegenerative le-
sion or a combination of the two. The clinical manifestations are a consequence
of the specific neurons and system areas that are affected [2, 30]. For instance,
dementia and altered high-order brain functions are linked to the anatomical
regions that include the hippocampus, entorhinal cortex, limbic system and neo-
cortical areas. Movement disorders are associated with the damage brought
to the basal ganglia, thalamus, brainstem nuclei, cerebellar cortex and nuclei,
motor cortical areas and lower motor neurons of the spinal cord. At their incip-
ient manifestation, combinations of these symptoms can be observed in several
diseases [30].
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It is not yet known what causes or triggers neurodegeneration, while the
disease characteristics sometimes overlap and their progression is difficult to
predict. In recent years, the traditional method of classifying neurodegener-
ative diseases based on symptomatology revealed difficulties in the diagnostic
process of neurodegeneration, and as a consequence, in finding adequate treat-
ment courses [31, 2]. These difficulties stem from the extent of simultaneous
occurrence of both clinincal and neuropathological features defined for separate
disorders in one individual at the same time. Armstrong et al. [31] described
three models approaching the classification of neurodegenerative diseases: a
discrete model, an overlap model and a continuum model. The discrete model
implies discrete diseases with little overlap of the clinical and neuropathological
features. An overlap model implies a certain degree of overlay in the disease
features, while in a continuum model the high degree of overlay of the features
can be regarded as a continuous variation of features from one disease to an-
other. Figure 2 presents the overlap of four different clinical feature categories in
between the selected diseases: sleep disorders, cognitive and behavioral changes,
speech impairments and motor impairments. These can further be broken down
into other specific disorders. RBD and RLS appear in diseases that seem to
be characterized by alpha-synuclein depositions: DLB, PD and MSA. AD also
presents symptoms related to sleep disorders, but in this case they are related
to alterations in the sleep/wake cycle of the patient. Cognitive and behavioral
changes as an effect of the disease are mostly encountered in dementing dis-
orders such as AD or DLB, but also appear in HD, a disease predominantly
characterized by motor dysfunctions. The most relevant cognitive impairments
include memory loss and problems with perception. Physicological changes due
to neurodegenerative diseases include personality changes (in AD), depression
and anxiety (in DLB) and mood changes (in HD). Clinical features related to
speech impairments can be regarded as modifications in the lexical content and
those related to vocalization. The lexical content of speech is altered in the case
of dementing diseases (AD and DLB), while vocalization is different for diseases
that are governed by motor dysfunctions. Motor impairments are present in
parkinsonism syndromes. Hence bradykinesia, posture and balance dysfunction
along with facial muscle rigidity are clinical features of DLB, PD and MSA. HD
also presents motor impairments but unlike parkinsonism diseases, it presents
hyperkinesia characterized by chorea and tremor.

The nosological approach used by medical professionals to diagnose their
patients involves an analysis of the main clinical symptoms along with imaging
the lesions, if possible. Computational approaches can be used as an aid in
the diagnosis and monitoring of these diseases by tracking different classes of
symptoms. They can be used either for disease identification or for monitor-
ing the progression and evaluating different treatment courses, either through
medical follow-ups or remote tracking. Hence, in our taxonomy we approach a
classification of neurodegenerative diseases based on the clinical symptomatol-
ogy. A symptomatology which can also be tracked for following progression and
for disease identification. Following the study of Kovacs et al. [30], we propose
three categorizations for neurodegenerative disorders based on their predomi-
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Figure 2: Overview of the different clinical features of the most prominent neurodegenerative
diseases.

nant clinical characteristics: dementia, abnormal movements and the combina-
tion of the two. The disorders characterized by abnormal movements can be
further subdivided into hypokinetic and hyperkinetic. In hypokinetic diseases,
movements are slowed or diminished, whereas in hyperkinetic disorders, uncon-
trolled movements appear. The taxonomy is provided in Table 1 (the sources
for the prevalence data are the following articles [32, 33, 34] and online docu-
ments1). The list of diseases is not exhaustive, but provides a complete overview
from the perspective of existing computational approaches. The prevalence of
these disorders is increasing and it is estimated that the number of patients will
double by 2050 [1], along with the increase in the older population. Details on
the prevalence of each disease is available in Table 1. As neurodegeneration is a
process affecting mostly individuals older than 60 years, most data is reported
in literature with respect to the elder population. Significant variations are re-
ported between different areas of the globe, with a slightly higher prevalence
in low and middle income countries. Out of all neurodegenerative diseases, the
dementing ones have the highest prevalence, with AD taking the leading role.

Based on the proposed taxonomy, we have selected several diseases that we
considered representative for each disease category. For the dementing disorders,
we have chosen to focus on Alzheimer’s disease due to its slightly higher preva-

1https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf,
https://www.alzheimer-europe.org/Dementia/Other-forms-of-dementia/Neurodegenerative-
diseases,https://emedicine.medscape.com/article/1151013-overview,
https://www.karger.com/Article/FullText/443738, https://www.valueinhealthjournal.com/article/S1098-
3015(18)31696-6/fulltext
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lence compared to other diseases in this group (0.6% see Table 1). Although
fronto-temporal dementia is the second most encountered dementing disorder,
we do not focus on this disorder as most of the symptoms overlap with AD.
Some aspects of the differential diagnosis between AD and FTD are covered in
Section 3. From the motor hypokinetic disorders, Parkinson’s disease has the
highest prevalence (0.2% see Table 1) and was included in this survey. Although
MSA and ALS (with prevalence of 0.003% and 0.006%, respectively see Table 1)
are also hypokinetic disorders, we have decided to include them in this survey
due to the paucity of studies using machine learning techniques. As they present
similar symptoms to PD, aspects on their differential diagnosis is also included.
Huntington’s disease was chosen as a representative of the motor hyperkinetic
disorders group as it has the highest prevalence compared to similar diseases
(0.004% see Table 1).

2.3. Taxonomy of computational approaches

Having analyzed the medical perspectives of neurodegeneration and identi-
fied the prominent diseases, we now focus on the existing computational ap-
proaches that come in support of the diagnosis, monitoring and improvement of
the patient’s life. As previously mentioned, we shall focus on a symptomatology-
based analysis. Table 2 illustrates the proposed taxonomy of existing approaches.
We propose a classification based on: clinical symptomatology and the disease
they characterize or detect, basic modality used as input in the computation and
their goal. The symptomatology is divided into five main categories: (1) Sleep
disorders — which can be further subdivided into several disorders. REM sleep
behavior disorder (RBD) and restless leg syndrome (RLS) (see Section 8). (2)
Speech impairments — are observed in both dementing and motor debilitating
neurodegenerative diseases, however their manifestation is different. In dement-
ing disorders, the lexical content of the speech is altered. In motor disorders, the
muscles controling speech production are affected and thus vocalization impaire-
ments are present. (3) Motor impairments — the most visible effect of motor
impairments is the effect they have on limb muscle control. Thus problems with
gait, tremor and posture are very often encountered. Other symptoms include
reduced facial expressions and modifications in handwriting (see Sections 4, 5
and 7). (4) Biomarkers — the identification of specific protein depositions in
specific anatomical locations by analyzing medical images can define disease
biomarkers. Modalities such as EEG, EMG or eye movements can also be used
as modalities to extract disease biomarkers.

Computational approaches can also be divided based on the disease they
are applied to. Here we chose to look only at representative categories of neu-
rodegeneration as presented in Section 2.2. AD is representative for dementing
diseases. Frontotemporal dementia was not considered in this review as it is
similar in symptoms to AD, while having a lower incidence rate. PD, MSA,
ALS and HD are all predominantly motor disorders. Computational methods
are highly dependent on the type of data used as input, especially when looking
at feature extraction. The sensor modality used for characterizing a disease
depends on the type of symptoms analyzed. Hence sleep disorders are usually
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Table 1: Taxonomy of nerodegenerative diseases: classification based on symptoms, specific
disease examples, affected areas, prevalence (*percent normalized to 100,000 people), clinical
symptoms indicative of the overlap between diseases, and prevalence of sources cited in this
article.

C
la

s
s

D
is

e
a
s
e

L
e
s
io

n
T

o
p

o
g
r
a
p
h
y

P
r
e
v
a
le

n
c
e
*

M
a
in

C
li

n
ic

a
l

S
y
m

p
t
o
m

s
#

A
r
t
ic

le
s

D
e
m

e
n
ti

n
g

A
lz

h
e
im

e
r’

s
D

is
e
a
se

C
e
re

b
ra

l
c
o
rt

e
x
,

H
ip

-
p

o
c
a
m

p
u
s,

B
a
sa

l
n
u
-

c
le

u
s

o
f

M
e
y
n
e
rt

0
.6

%
[2

0
1
5
]

P
e
rs

o
n
a
li
ty

ch
a
n
g
e
s,

c
o
g
n
it

iv
e

a
n
d

m
e
m

o
ry

im
p
a
ir

m
e
n
ts

,
d
e
lu

si
o
n
s,

h
a
ll
u
c
in

a
ti

o
n
s

1
3
5

F
ro

n
to

te
m

p
o
ra

l
D

e
-

m
e
n
ti

a
F
ro

n
ta

l
a
n
d

te
m

p
o
ra

l
lo

b
e
s

o
f

th
e

c
e
re

b
ra

l
c
o
r-

te
x

0
.0

2
%

[2
0
1
3
]

A
lt

e
re

d
p

e
rs

o
n
a
li
ty

,
a
p
a
th

y
,

d
is

in
h
ib

it
io

n
,

im
p
a
ir

e
d

m
e
m

o
ry

,
p
la

n
n
in

g
,

a
tt

e
n
ti

o
n
,

p
e
r-

c
e
p
ti

o
n

N
A

D
e
m

e
n
ti

n
g

a
n
d

a
b
n
o
rm

a
l

m
o
v
e
m

e
n
ts

L
e
w

y
B

o
d
y

D
e
m

e
n
ti

a
C

e
re

b
ra

l
c
o
rt

e
x
,

B
a
sa

l
g
a
n
g
li
a

0
.0

0
2
%

[2
0
1
6
]

C
o
g
n
it

iv
e

im
p
a
ir

m
e
n
ts

,
d
e
lu

si
o
n
s,

d
e
p
re

s-
si

o
n
,

a
n
x
ie

ty
,

ri
g
id

it
y
,

m
a
sk

-l
ik

e
fa

c
e

N
A

C
o
rt

ic
o
b
a
sa

l
D

e
g
e
n
-

e
ra

ti
o
n

C
e
re

b
ra

l
c
o
rt

e
x
,

B
a
sa

l
g
a
n
g
li
a

0
.0

0
6
%

[2
0
1
3
]

L
a
n
g
u
a
g
e

im
p
a
ir

m
e
n
t,

m
u
sc

le
tw

it
ch

e
s,

a
b
-

n
o
rm

a
l

p
o
st

u
re

N
A

AbnormalMovements

H
y
p

o
k
in

e
ti

c

P
a
rk

in
so

n
’s

D
is

e
a
se

B
a
sa

l
g
a
n
g
li
a

0
.2

%
[2

0
1
7
]

S
lo

w
in

g
o
f

v
o
lu

n
ta

ry
m

o
v
e
m

e
n
ts

,
m

u
sc

le
ri

g
id

it
y
,

re
st

in
g

tr
e
m

o
r,

d
iffi

c
u
lt

y
sp

e
a
k
in

g
,

g
a
it

a
n
d

p
o
st

u
ra

l
d
is

tu
rb

a
n
c
e
s,

ti
n
y

h
a
n
d
-

w
ri

ti
n
g
,

sl
e
e
p

d
is

o
rd

e
rs

2
5
9

O
li
v
o
p

o
n
to

c
e
re

b
e
l-

la
r

a
tr

o
p
h
y

C
e
re

b
e
ll
u
m

,
P

o
n
s,

In
fe

-
ri

o
r

o
li
v
e
s

0
.0

0
5
%

A
ta

x
ia

,
tr

e
m

o
r,

ri
g
id

it
y
,

sl
e
e
p

d
is

o
rd

e
rs

,
d
e
-

p
re

ss
io

n
,

tr
e
m

o
r

N
A

P
ro

g
re

ss
iv

e
S
u
p
ra

n
u
-

c
le

a
r

P
a
ls

y
C

e
re

b
ra

l
N

u
c
le

i
0
.0

0
6
%

[2
0
1
3
]

L
o
ss

o
f

b
a
la

n
c
e
,

d
iffi

c
u
lt

y
m

o
v
in

g
e
y
e
s,

sl
o
w

in
g

o
f

m
o
v
e
m

e
n
t,

sl
u
rr

e
d

sp
e
e
ch

,
p

e
r-

so
n
a
li
ty

ch
a
n
g
e
s

N
A

M
u
lt

ip
le

S
y
st

e
m

A
t-

ro
p
h
y

S
e
v
e
ra

l
a
re

a
s

o
f

th
e

b
ra

in
a
n
d

sp
in

a
l

c
o
rd

0
.0

0
3
%

[2
0
1
3
]

L
o
w

b
lo

o
d

p
re

ss
u
re

w
h
e
n

st
a
n
d
in

g
u
p
,

a
b
-

n
o
rm

a
l

b
re

a
th

in
g

d
u
ri

n
g

sl
e
e
p
,

d
iffi

c
u
lt

y
u
ri

n
a
ti

n
g
,

a
b
n
o
rm

a
l

sw
e
a
ti

n
g
,

sl
o
w

n
e
ss

o
f

m
o
v
e
m

e
n
t,

im
p
a
ir

e
d

sp
e
e
ch

6

A
m

y
o
tr

o
p
h
ic

L
a
te

ra
l

S
c
le

ro
si

s
S
p
in

a
l

c
o
rd

0
.0

0
6
%

[2
0
1
3
]

W
e
a
k
e
n
in

g
o
f

th
e

m
u
sc

le
s,

sl
e
e
p

d
is

o
rd

e
rs

,
in

v
o
lu

n
ta

ry
u
n
c
o
n
tr

o
ll
e
d

si
g
h
in

g
,

p
ro

b
le

m
s

sw
a
ll
o
w

in
g

1
5

H
y
p

e
rk

in
e
ti

c

H
u
n
ti

n
g
to

n
’s

D
is

e
a
se

B
a
sa

l
g
a
n
g
li
a

(c
a
u
d
a
te

n
u
c
le

u
s,

c
o
rp

u
s

st
ri

a
-

tu
m

)

0
.0

0
4
%

U
n
c
o
n
tr

o
ll
e
d

m
o
v
e
m

e
n
ts

,
a
b
n
o
rm

a
l

b
o
d
y

p
o
st

u
re

,
ch

a
n
g
e
s

in
b

e
h
a
v
io

r
a
n
d

c
o
g
n
it

io
n

5
0

E
ss

e
n
ti

a
l

T
re

m
o
r

B
a
sa

l
g
a
n
g
li
a

0
.0

0
3
%

T
re

m
o
r

o
f

th
e

h
a
n
d
,

h
e
a
d
,

a
rm

s,
v
o
ic

e
,

to
n
g
u
e
,

le
g
s

N
A

10



characterized by PSG and actigraphy based recordings. Speech impairements
are analyzed through voice recordings of participants performing different tasks,
while motor impairements through a variety of sensors that measure movement
in controlled and uncontrolled settings, e.g., accelerometers, EMG, videos. The
purposes of using computational methods in helping patients suffering from
neurodegenerative disorders is many fold. They can aid in the diagnostic by
providing symptom characterization and help in identifying the exact disease.
They can also be used for providing an objective monitoring method of disease
progression. As the exact classification of neurodegenerative diseases is difficult
when symptoms overlap, automatic methods of identifying small symptomato-
logical differences are desired. A promising use of computational methods is the
forecasting of events related to disease symptoms or even the identification and
classification of the disease prior to the clinical onset. The neurodegenerative
process can sometimes start years before symptoms are observed.

3. Alzheimer’s Disease

In this section, we present a review of the most widely used computational
approaches in the diagnosis and monitoring of Alzheimer’s disease (reported
metrics are presented in Section 9.4). Most studies included in the review focus
on the differentiation between AD and healthy controls (baseline participants,
usually age-matched), AD and its prodromal state mild cognitive impairment
(MCI) or the differential diagnostic between AD and other forms of dementia.
There is also significant interest in monitoring the disease progression by deter-
mining several levels of severity or trying to predict the conversion from MCI
to AD.

3.1. Biomarkers

3.1.1. Use of brain imaging

Alzheimer’s disease is linked to the accumulation of alpha-synuclein in the
brain tissue. This accumulation can be tracked and studied through different
neuroimaging techniques. Currently, neuroimaging methods are the most accu-
rate option for providing an AD diagnosis while the patient is still alive. The
golden standard for a precise AD diagnosis remains the autopsy. Since AD is the
most prevalent type of neurodegenerative disease, its characteristics as revealed
by neuroimaging have been extensively studied resulting in a high availability
of large datasets. Topics addressed in literature include: (i) the detection of AD
patients from HC [35, 36, 37], (ii) measuring disease severity [38], (iii) helping
with the differential diagnostic from different types of dementia [39, 40] and,
the most addressed topic, (iv) differentiating between MCI, AD and HC along
with the prediction of conversion from MCI to AD.

Detection of AD patients. Several recent studies have addressed the
problem of differentiating between AD and HC by using deep learning techniques
previously developed for other image processing problems. Islam et. al [36]
compare the deep convolutional neural network Inception V5 model with the
GoogleNet on MRI data from the OASIS dataset containing 100 AD patients
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Table 2: Taxonomy of computational approaches: clinical features or disease they deal with,
diseases sharing these features, used sensor modalities and purpose of the approach (PD —
Parkinson’s disease, DLB — Dementia with Lewy Bodies, MSA — Multiple System Atro-
phy, AD — Alzheimer’s disease, ALS — Amyotrophic Lateral Sclerosis, HD — Huntington’s
disease).

Clinical feature Disease (s) Sensor Modality Purpose

Sleep disorders REM sleep be-
havior disorder

PD, DLB,
MSA

Polysomnography,
actigraphy, EEG,
EMG

diagnosis

Restless leg syn-
drome and peri-
odic limb move-
ment

PD, DLB,
MSA

Polysomnography,
actigraphy, EMG

diagnosis

Disturbed
sleep/wake
cycle

AD Polysomnography,
actigraphy

progression monitoring

Speech Impair-
ments

Lexical content AD Voice diagnosis, progression
monitoring

Vocalization AD, DLB,
MSA, PD

Voice diagnosis, classifi-
cation, progression
monitoring

Motor impair-
ments

Gait, Freezing of
Gait, Posture

PD, DLB,
MSA, ALS,
HD

Accelerometers, gyro-
scopes, force sensors,
EMG, video

diagnosis, classifi-
cation, progression
monitoring, disease
identification

Tremor PD, DLB,
MSA, ALS,
HD

Accelerometers, gyro-
scopes, EMG, actigra-
phy

diagnosis, classifi-
cation, progression
monitoring

Facial expres-
sions

PD, DLB,
MSA

Video, EMG diagnosis, disease iden-
tification

Bradykinesia PD Accelerometer, gyro-
scopes

diagnosis, disease iden-
tification

Handwriting PD images of handwrit-
ing, writing kinemat-
ics, EMG, accelerome-
ter

diagnosis, disease iden-
tification

Biomarkers Imaging AD, DLB,
PD, MSA,
ALS, HD

MRI, PET, SPECT,
DTI

diagnosis, classifi-
cation, progression,
monitoring

Other biomark-
ers

AD, DLB,
PD, MSA,
ALS, HD

EEG, Eye movement
tracking, EMG, ge-
netic information, pro-
teomics

diagnosis, classifi-
cation, progression,
monitoring
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and 300 HC. Using a 5-fold cross validation, an accuracy of 73.75% was obtained.
Katako et. al [35] work on FDG-PET data from the ADNI database using an
SVM classification algorithm in a 10-fold cross-validation. A sensitivity of 84%
and a specificity of 95% is obtained for differentiating between AD and HC.
Sarraf et. al [37] use LeNet-5 resulting in an accuracy of 96.85% for AD vs. HC
differentiation.

Measuring AD severity . The severity of AD can also be classified through
neuroimaging data. Mahmood et. al [38] use MRI data from a total of 687 AD
patients from the OASIS dataset. These are classified into the following classes:
no dementia, very mild AD, mild AD and moderate AD with an overall accuracy
of approximately 90%.

Differential diagnostic. Differentiating between AD and Fronto-temporal
dementia based only on symptoms can be problematic. Davatzikos et. al [39]
use voxel based and high dimensional pattern classification features extracted
from grey and white matter regions of brain MRI. By using an SVM classifier
with a leave-one-out cross-validation, the proposed algorithm can distinguish
between AD and FTD with an accuracy of 84.3%. The difficulty in placing a
correct AD diagnosis is valid also for other dementing disorders. The correlation
between the golden standard test for AD diagnosis, the autopsy, and the data
collected from MRI and neurophysiological tests several years prior to death,
has been studied by Kautzky et. al [41]. A classification model was built on
the collected data using the labels placed after autopsy. A random forest model
was created in a 5-fold cross-validation scenario and resulted in an accuracy of
only 62%.

Differentiating between AD and MCI . In some patients, mild cognitive
impairment is a prodromal symptom of Alzheimer’s disease. The differences in
the brains of MCI and AD patients along with the conversion of MCI into AD
has been extensively studied using brain imaging technology. Most studies make
use of MRI data [42, 43, 44, 45, 46]. Some works study the differences between
MCI and AD patients by combining multiple imaging technologies such as MRI
and PET [47] or FDG-PET [48] or MRI and DTI [49]. Biomarkers for the
conversion are proposed by extracting voxel-based features [42], morphometric
and volumetric features [50]. Classification is performed using a variety of well-
known algorithms adapted from other applications.

In the early work of Plant et. al [42], brain changes appearing in MCI as pre-
dictors of AD are characterized by voxel based features. These features are used
together with an SVM classifier allowing a differentiation of MCI from AD with
an accuracy of 97.48%. An SVM classifier is also used by Salvatore et. al [43] to
differentiate between MRI images obtained from MCI patients that converted
to AD and MCI patients that did not convert. Using a nested cross-validation
the accuracy was of 66%. Yan et. al [49] fuses MRI and DTI information for the
differentiation between subjective cognitive decline, mild cognitive impairment
and Alzheimer’s disease. The result of an SVM classification is an accuracy of
98.58% for AD vs. HC, of 97.76% for MCI vs. HC and of 80.24% for subjective
cognitive decline vs. MCI.

Deep neural networks have been gaining popularity in the field of imaging
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classification. Naturally, some of the methods have been adopted in the problem
of AD vs. MCI classification based on brain imaging. Ahmed et. al [46] use a
3D convolutional autoencoder network for AD vs. MCI vs. HC classification
based on anatomical features. The training set consisted of 210 patients from
the ADNI dataset, while the test set was a selection of 30 patients from the
CADDementia dataset. The result was a sensitivity of 100%, 80% and 47% for
AD, MCI and HC classes respectively. Jabason et. al [45] have also used deep
autoencoders for feature selection. With a 5-fold cross validation used on data
from the ADNI dataset the accuracy, sensitivity and specificity obtained was of
98.55%, 98.79% and 99.31% respectively.

3.1.2. Use of EEG

As Alzheimer implies a severe loss of neuronal connections, changes can
also be observed on the recorded EEG of AD patients. When compared to
healthy controls, EEG signals recorded from AD patients show a slowing down
of the characteristic EEG frequency bands and a decrease in complexity due to
the diminished neuronal synchronization and of different types of oscillations
[51]. Due to the non-invasive nature of the recording, EEG is a good candidate
for the extraction of AD biomarkers. EEG based biomarkers have been used
in literature to: (i) automatically classify AD patients and HC [51, 52, 53],
(ii) to provide help in the differential diagnostic between AD and other types
of dementia [54, 55], (iii) to automatically distinguish between Mild-Cognitive
Impairment (MCI) and different stages of AD [53, 56].

Classification of AD patients. Most work conducted on the automatic
detection of AD vs. HC is focused on extracting computational biomarkers
based on the slowing down of EEG frequencies and the reduction in signal com-
plexity. Trambaiolli et. al [52] takes advantage of the slowing down of EEG
activity by extracting spectral and coherence features from EEG data and us-
ing them as input to an SVM classifier. Feature selection techniques are used to
increase the performance on a dataset of 22AD and 12HC with a leave-one-out
validation method. The classification accuracy was of 91.8%. Automated EEG
based AD classification with a low-density EEG montage has been proposed by
Cassani et. al [51]. Using only seven EEG channels, the data was pre-processed
using ICA and wavelet decomposition for artifact removal. Several groups of
features were extracted: spectral, coherence and amplitude modulation features.
These were employed in a 10-fold cross validation framework for an SVM clas-
sified. The performance of the model was evaluated using accuracy, sensitivity
and specificity (77.3%, 79.2%, 75.2% respectively).

Differential diagnosis. Placing a diagnosis of Alzheimer is not always
easy as the symptoms most often overlap with other types of dementia. Several
studies have proposed solutions for helping the differential diagnosis. Dauwan
et. al [54] use quantitative EEG features combined with clinical and neurophys-
iological information, visual EEG and cerebrosinal fluid diagnostic information
for creating a model that differentiates between DLB and AD. The proposed
model uses a random forest classifier and was tested on 66DLB, 66AD and 66HC
subjects. An accuracy of 87% was obtained for the differential diagnostic prob-
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lem. The differentiation between PD related dementias and AD is studied by
Jeong et. al [55] using an LDA classifier on features extracted from wavelet en-
ergy and coherence. The differentiation between conditions was obtained with
an accuracy of 79.18% revealing significant differences in the beta and gamma
bands.

Differentiating MCI from AD . The majority of studies extracting AD
biomarkers from EEG, use resting-state EEG recordings of different lengths.
Mamani et. al [53] proposed an event related potential (ERP) based study
using an N-back memory task for obtaining AD and MCI biomarkers. A sta-
tistical analysis showed a significant difference between AD, MCI and HC on
EEG channels recorded over the fronto-centro-parietal part. The problem of
classifying HC, MCI and AD subjects has been addressed by McBride et. al
[56] based on Sugihara causality. The three class problem has been solved using
an SVM classifier in a leave-one-out scenario using a small database of 15HC,
16MCI and 17AD. The best accuracy was of 95.8%.

3.2. Speech Analysis

The effects of Alzheimer’s related dementia can also be observed in the
speech of patients. Unlike in the case of Parkinson’s, where muscles controlling
the production of speech are affected, Alzheimer’s Disease affects the content of
the speech of AD patients. The majority of studies analyzing the speech of AD
patients focus on features related to the semantics of the spoken communication.
Topics of interest include: (i) the automatic differentiation between AD and HC
[57, 58, 59], and (ii) the detection of the prodromal stage of MCI and its different
intermediate stages [60, 61].

Differentiating between AD and HC . A method for the automatic de-
tection of AD subjects using the semantic content of speech was proposed by
Fraser et. al [58]. A total of 370 features were extracted from the Dementia-
Bank database using as input the syntactic complexity, the grammatical con-
stituents, the psycholinguistics (frequency of certain words), vocabulary rich-
ness and repetitiveness but also features derived from the acoustic properties
of speech. By using a multi-linear regression in a 10 fold cross-validation sce-
nario a maximum average accuracy of 81.92% was obtained. Konig et. al [57]
looked at semantic fluency in 93 AD and MCI patients versus 24 HC using an
SVM classifier with a leave-one-out approach. The result was an accuracy of
93.9%. De Ipina et. al [62] aimed at extracting biomarkers of AD from speech,
both from spontaneous speech as well as analyzing the emotional response from
acoustic features. The best classification accuracy was of a 97.7% using an SVM
classifier that had as input emotional features as well.

Detection of prodromal AD from MCI . Automatically identifying pa-
tients suffering from mild cognitive impairments can be useful for the prediction
of conversion to AD. In this case the semantic features of speech can also be of
help. In the work of Konig et. al [60], the distinction between MCI, AD and HC
is studied through the extraction of semantic, vocal and statistical features from
a short vocal task. Using random sub-sampling for data balancing and an SVM
classifier, HC are distinguished from MCI subjects with 79% accuracy. Satt
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et. al [63] employs data regularization techniques to overcome data sparseness
from a small database of 15HC, 23MCI and 26 AD subjects. Semantic, vocal
and acoustic features are used with a Naive Bayes classifier. The differentiation
between MCI and HC reaches an accuracy of 80% while MCI and AD reaches
87%.

3.3. Eye Movement Analysis

Detecting patients in the mild cognitive impairment state that could convert
to AD is useful for early treatment intervention and better disease management.
Existing methods make use of the different eye movement patterns resulting as
a reaction to different visual stimuli. Pavisics et. al [64] use eye tracking related
features, e.g., number of saccades, wave jerks, maximum fixation duration, to
distinguish between AD and HC. By employing a Hidden Markov Model an
accuracy of 95% is obtained. Eye tracking was also used by Parsons et. al [65] to
distinguish between AD and posterior cortical atrophy. Using a Hidden Markov
Model to model movements in gaze location, a differentiation accuracy of 95.5%
is obtained. Alzheimer’s disease leads to severe cognitive impairments and the
emotional toll it takes on the patients should not be ignored when proposing
different treatment courses. Chung et. al [66] analyzes visual scanning behavior
to automatically detect apathy in AD patients. Two separate LSTM cells are
used to model visual scanning behavior during emotional and non-emotional
stimuli presentation. The output of the recursive neural network is fed into a
logistic regression classifier with an outcome of 74% AUROC within a hold out
validation.

3.4. Gene Analysis

The development of Alzheimer’s disease in some individuals has also been
linked to a certain genetic predisposition. The human genome contains a high
amount of data unique for each individual. Computational methods, more
specifically machine learning tools, have proved to be extremely useful in map-
ping this information and determining specific genetic links to diseases. AD is
no exception and several works focus on identifying genes or gene interactions
related to AD development. For instance, Park et. al [67] studied the genetic
interactions that could be correlated to AD. The input data was fed into a Ran-
dom Forest classifier to detect HC and AD related information. An accuracy
of 90.2% was obtained. Huang et. al [68] aimed at identifying genes highly
correlated to Alzheimer’s disease from the whole genome. Genes were labeled
as AD and non-AD related. By extracting several genome related features, an
SVM classifier with a radial basis kernel was used. The receiver operating char-
acteristic was of 84.56%. Xu et. al [69] also uses protein sequence information
with an SVM classifier, resulting in an accuracy of 85.7% in predicting AD.

3.5. Multimodal Features

Alzheimer’s disease, along with all the other neurodegenerative diseases, is a
complex disorder that affects many facets of the normal functioning of a patient.
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Using one type of modality as input for analyzing the disease might in some cases
be sufficient but in most cases is not enough for an adequate diagnosis. There-
fore, some researchers focused on harvesting information from complementary
sources. For instance, Alvarez et. al [70] proposed the ICT4LIFE platform to
monitor the behavior of AD. For a more accurate disease classification, infor-
mation is obtained from multiple sources including electronic health records,
body sensors and Kinect sensors. Several features are extracted and a Sparse
Autoencoder is used for optimizing feature selection. The result is classified
with a logistic regression with an accuracy, precision and recall of 98.4%, 98.7%
and 98.3% respectively. Colloby et. al [71] used a combination between EEG
and MRI data to distinguish between AD and DLB. Using a SVM classifier, it
achieves an accuracy of 90%. The fusion of different technologies has also been
investigated in this case. Fraser et. al [72] combined eye movement analysis
with speech features in a logistic regression model. Using the two types of fea-
tures an accuracy of 86% was obtained for classifying MCI and HC subjects.
Grassi et. al [73] looks at the conversion of MCI to AD within a 3 year time
frame using sociodemographic characteristics, clinical and neurophysiological
test scores. With a SVM classifier, an AUC of 0.962 is obtained.

3.6. Summary

Alzheimer’s disease symptoms and progression can be investigated and tracked
through diverse methods. In this section, we have covered some of the topics
that use computational methods in the study of Alzheimer’s disease. With spe-
cific regard to machine learning techniques, these can be applied on problems
with a diverse scope, ranging from AD detection to differential diagnosis and
predicting disease progression. A selection of some of the most relevant machine
learning research works on AD presented in this review is summarized in Ta-
ble 3. The information contains details on the purpose of the study, the sensor
modality, the type of classifier used and the best performance obtained.

4. Parkinson’s Diseases

Parkinson’s disease is the second most encountered neurodegenerative dis-
ease and we consider it to be representative for hypokinetic diseases with similar
symptoms. PD and other hypokinetic diseases are characterized by bradyki-
nesia, muscle rigidity and freezing of movements. As the disease progresses,
different impairments related to difficulties in muscle control can be seen in
patients. Most computational methods focus on, either detecting PD versus
healthy control subjects, or on mapping the differently computed features to
diseases measurement severity scales, such as UPDRS or H&Y. PD subtype
classification is also of interest.

4.1. Motor Symptoms Monitoring

The most predominant symptoms that affect PD patients are the motor
disabilities. Depending on the symptoms monitored and the final goal of the
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Table 3: Overview of the most relevant research works using machine learning in handling
Alzheimer’s disease that were presented in this work. Brief details are provided on the dataset
size and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref

AD vs. HC MRI 100AD,
300HC

InceptionV5,
GoogleNet

5fold
CV

73.75% [36]

AD vs. HC MRI 28AD, 15HC LeNet-5 hold out 96.85% [37]

AD vs. HC Eye tracking 26AD, 21HC HMM CV 95.5% [65]

AD vs. HC EEG 22AD, 12HC SVM LOO 91.8% [52]

AD vs. HC
MCI vs. HC

MRI, DTI 28AD, 45MCI,
38AD

SVM CV 98.58%
97.76%

[49]

AD vs. MCI EEG 17AD, 16MCI SVM LOO 95.8% [56]

AD vs. MCI Speech 26AD, 23MCI SVM LOO 93.9% [57]

preAD vs.
MCI

Speech 26AD, 23MCI Naive
Bayes

- 80% [63]

MCI vs. HC Eye tracking,
speech

27MCI, 30HC Logistic
Regression

LOO 86% [72]

AD vs. DLB EEG 66AD, 66DLB RF - 87% [54]

AD vs. DLB EEG, MRI 30AD, 21DLB SVM - 90% [71]

AD vs. FTD MRI 37AD, 12FTD SVM LOO 84.3% [39]

research, different recording and processing methodologies are used. As motor
symptoms are some of the most encountered problems in PD, an abundance
of studies are available on the topic. Computational methods developed for
the analysis of PD motor symptoms aim at discriminating between PD and
HC [74] but also at objectively quantifying the severity of the disease though
comparisons to the UPDRS and H&Y scales [75, 76, 77]. Another application
is the monitoring of the on/off medication states of patients [78]. Analyzing
the severity of motor disability with respect to the time passed from the last
medication intake, one can suggest adjustments to the treatment scheme.

4.1.1. Gait and posture

Most studies looking at the gait and posture of PD patients focus on distin-
guishing or characterizing different signals collected for patients with respect to
HC.

Recording methods. The dynamics of gait are, in the majority of cases,
characterized using wearable accelerometer sensors placed at different locations
on the body, e.g., ankles [79], waist, wrist [80]. In this type of analysis, video
recordings annotated by specialists are considered the golden standard [80].
Another approach for monitoring problems with gait is through force sensors
placed under the foot [76, 74]. This technology is particularly advantageous as
sensors can easily be placed inside the shoe with no significant inconvenience to
the user. EMG signals can also be used for abnormal gait detection, however
these are more cumbersome to record and integrate in wearable technologies.
Kugler et al. [81] used EMG sensors on the lower limb muscles for proposing
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objective measures of evaluating gait in standard tests. Impaired balance is
also studied, for instance Stack et al. [80] use inertial sensors. Protocols for
recording involve mostly walking for a specific distance or standard gait tests
used by medical professionals.

Classification techniques. Most analysis performed focus on extracting
time and frequency domain features for disease state classification. Statistical,
entropy and energy features are predominantly extracted from the time domain
signals. In the frequency domain, the predominant frequency is characterized
along with the phase and the energy content. Asuroglu et al. [76] introduce a
locally weighted Random Forest classification for estimating the severity of PD
in comparison to the UPDRS scale, using eight force sensors. Alam et al. [74]
add swing and stride time along with statistical time domain features as input
to an SVM cubic kernel classifier which distinguishes between PD and HC with
an accuracy of 93.6%. Three different studies amounting a total of 93 PD and
73 HC subjects with ground reaction force recordings [82] were used by Zhao et
al. [83] for implementing a two-channel model combining LSTM and CNN.

4.1.2. Bradykinesia

Studies focusing exclusively on the analysis of bradykinesia in PD patients
estimate the severity of the symptoms based on accelerometer and gyroscope
sensors placed on different locations of the body [84, 85]. For instance, Man-
zanera et al. [85] use a Shimmer platform containing accelerometers, gyroscopes
and magnetic sensors to record data from 25 PD and 10 HC subjects while
performing a series of standardized motor tasks. The obtained signals were
fused and features were computed both in time and frequency domain. After
applying a t-test based forward selection wrapper for feature reduction, the re-
maining features were fed into an SVM classifier. The best results were obtained
using a combination of seven features and resulted in error rates as low as 9.3-
9.8%. Sama et al. [84] use a support vector regression for classifying symptom
severity for a smaller database containing 12 PD patients with an accuracy for
bradykinesia detection of 90%.

4.1.3. Freezing of gait

Akinesia occurs in some PD patients with a frequency dependent on the
severity of the disease. It is possible to provide support to those suffering from
a freezing of gait episode to surpass the moment [86]. Hence many studies focus
on the detection of such episodes.

For rehabilitation purposes, the detection should provide good performance
in uncontrolled environments with as little intrusion as possible. Most of the
studies focus on the detection of freezing of gait episodes using inertial sensor
based wearable technologies. These include accelerometers and gyroscopes [87]
placed on the waist [88], thigh [86] or wrist [89]. Gait specific features are
extracted from the time domain, e.g., statistical measures [89, 90], step and
stride time and length [91], and frequency domain, e.g. freezing index [86], power
in different frequency bands [89]. Good results were obtained in several studies
using the SVM classifier [88, 91]. Deep learning models are also investigated.
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Camps et al. [87] used a six layer convolutional network for FoG detection on
21 PD patients. The deep learning framework achieved 90% for the geometric
mean between sensitivity and specificity. Since smartphones already incorporate
these recording modalities and are ubiquitously available, their performance in
this circumstance has also been evaluated by some studies [90]. EEG signals
have also been used by Handojoseno et al. [92] for FoG onset detection. Their
dynamics were analyzed with wavelet transform based entropy measures and a
back propagation neural network classification.

4.1.4. Tremor

A characterization of disease severity or of treatment efficiency can also
be provided by the assessment of tremor severity. A convenient method of
assessing tremor is through the analysis of signals obtained from accelerometers
incorporated in wearable technology. Rigas et al. [93] propose the use of Hidden
Markov Models on accelerometer signals obtained from different parts of the
body of 18 PD and 5 HC subjects in different resting conditions. Tremor severity
was assessed with an accuracy of 87%. Kostikis et al. [94] used a smartphone for
training machine learning algorithms to distinguish the severity of parkinsonian
tremor on a database of 25 PD and 20 HC participants. A bagged ensemble of
decision trees provided the best results with 82% of the patients being classified
correctly.

4.1.5. Dyskinesia

A side-effect of levodopa medication used for alleviating PD symptoms is the
appearance of uncontrolled movements. The severity of the unwanted effects of
medication can also be tracked. Chelar et al. [95] use magnetic motion trackers
to quantify the complexity of involuntary movements present in 10 dyskinetic
PD, 10 non-diskinetic PD and 10 HC participants with the help of multiscale
entropy. Automatic recognition of dyskinetic episodes was performed using
multilayer perceptrons. Inertial sensors are a more natural choice for dyskinesia
assessment. Tsipouras et al. [96] used accelerometers and gyroscopes placed at
the wrists, legs, chest and waist on a similar sample size to automatically recog-
nize dyskinetic patients using an artificial neural network with one hidden layer
and time and spectral features as input. The result was an average classification
accuracy of 84.3%.

4.1.6. Multiple-symptoms - ”on/off” state detection

The approaches presented above tackle the detection and characterization of
only one specific PD motor symptom at a time. However, patients most often
experience a combination of motor symptoms at a time. Tracking a combination
of the symptoms in different environments and with different medication intake
can be problematic.

Controlled environment - on/off detection . For an accurate assess-
ment of the patient’s state and of the disease progression, as many motor aspects
as possible should be considered in more complex systems. In the early work of
Patel et al. [77], the Shimmer platform was used with accelerometers placed on
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both lower and upper limbs to classify the severity of tremor, bradykinesia and
dyskinesia. Standardized motor tasks were performed according to the motor
section of the UPDRS. A total of 31 feature combinations were extracted and fed
into seven SVM classifiers with different kernels. The lowest mean estimation
error was of 1.2%.

Ambulatory setting - on/off detection . Salarian et al. [97] use a minia-
ture gyroscope placed on the upper limbs for estimating tremor and bradykinesia
but this time in an ambulatory setting. The algorithm made use of spectrum
analysis for tremor detection and the hilbert transform for bradykinesia estima-
tion. The tremor detection showed an overall sensitivity and specificity of 99.5%
and 94.2% respectively. Cole et al. [98] tested several dynamical machine learn-
ing techniques. Dynamic support vector machines and Hidden Markov Models
had both error rates below 10%. In general, focus is placed on the development
of unobtrusive systems for monitoring in uncontrolled environments. An im-
portant achievement is the REMPARK system that was designed for long term
home monitoring of PD patients. It comprises accelerometers and gyroscope
sensors placed on the wrist and waist of the patients. Bayes et al. [78] validate
REMPARK in detecting on-off states of 41 PD patients with 97% sensitivity
and 88% specificity.

Monitoring of Deep Brain Stimulation Effects. Another lead is to
estimate the effects of DBS treatments. The work of Zwartjes et al. [75] inves-
tigates the daily activities of 6 PD and 7 HC patients and extracts information
for quantification of tremor and bradykinesia. After applying a Decision Trees
based activity recognition algorithm, features are extracted for characterization
of rest and kinetic tremor, bradykinesia and hypokinesia and threshold-based
algorithms are applied. Kinetic tremor was identified with an accuracy of 78.7%
during sitting and 81.7% during standing. Angeles et al. [99] evaluated rigidity,
tremor and bradykinesia with the goal of DBS treatment optimization. 7 PD
subjects performed specific motor tasks with 3D accelerometer, gyroscope and
magnetometer sensors placed on the most affected hand. Several classification
algorithms were used to achieve an average accuracy of 90.9%.

4.2. Speech Monitoring

As PD causes the loss of neurons in the basal ganglia, the muscles involved
in the production of speech are also affected by the same symptoms as the
other motor muscles, i.e., rigidity, hypokinesia, and tremor. This causes a great
majority of PD patients to have dysarthic, abnormal speech [100]. Although the
difficulties in speech production can be regarded as another motor symptom, we
have decided to describe the computational approaches used on abnormal PD
speech separately due to the abundance of literature and the different sensor
modalities that are used as input. Dysarthic speech can be characterized by
several particular dysfunctions caused by the loss of proper motor control. In
the case of PD these include: dysphonia, imprecise articulation, dysprosody and
speech volume intensity fluctuations.

Applications. Most of the studies focus on the detection of PD patients
from the general healthy population [101, 102, 103, 104]. Other studies focus
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on the differential diagnosis between PD, MSA and PSP [105], on progression
monitoring [106] and severity monitoring [90]. Another promissing application
for speech in PD analysis is the detection of PD in an incipient stage, before a
clinical diagnostic is placed [104, 107]. Harel et al. [108] analyze speech of two
English speaking PD patients and two age-matched healthy controls retrospec-
tively and concluded that some of the frequency content analyzed was relevant
for the early identification of PD.

Features used . When tackling dysarthic PD speech, statistical features are
extracted from the time domain and specific frequency features are explored.
There is a high number of proposed features as the field of general speech pro-
cessing is well developed. The type of features selected depend on the type of
problem studied, i.e., phonation, articulation, rhythm or volume. Time domain
features include: duration of pause intervals, rate of speech timing, change in
interval length, period of onset of vocalization, vowel keeping time, descripive
statistical measures [109, 110, 111]. Frequency features are also diverse and some
of the most relevant are: main frequency of vocal cord vibration or pitch, jit-
ter, shimmer, noise-to-harmonics ratios, formant frequencies, vowel space area,
pitch and amplitude perturbation quotient, Mel Frequency Cepstrum Coeffi-
cients [102, 112, 110, 111].

Classification Algorithms. For all classification problems tackling PD
speech, i.e., PD vs. HC, differential diagnosis or severity monitoring, the most
used classification algorithm is SVM [102, 110, 112]. The early work of Little et.
al [102] used a SVM model with a Gaussian Radial Basis Kernel function and
resulted in an accuracy for PD identification from speech of 91.4%. Arroyave
et. al [110] distinguished between Spanish speaking PD patients and HC using
a SVM with a soft margin and Gaussian kernel in a 10-fold cross validation
strategy resulting also in a high accuracy of 91.3%. However, there are other
relevant approaches. For instance, Mekyska et al. [106] use a Random Forest
classifier for PD severity assessment on a database with 84 PD and 49 HC
patients. A sensitivity of 92.86% was obtained. The early work of Das et al. [113]
compares Neural Networks with Decision Trees and regression algorithms. The
neural network provided the best result, with an accuracy of 92.9%.

Real-life Recordings. The majority of the studies looking at dysarthic
PD speech focus on ideal voice recording conditions. However, PD detection
algorithms should be sufficiently robust for real-life, noisy scenarios. Applica-
tions in early detection of PD would be most efficient in population screening
scenarios. Correa et al. [103] analyze the effect of different noise conditions,
e.g., saturation, dynamic compression, additive white Gaussian noise and dif-
ferent kinds of environmental noise. Results showed that different background
environmental noises have a high impact on the classification results. Another
method of continuously assessing the condition of PD patients is through the
use of a mobile phone, either in a test application or through recording of phone
conversations or via the cellular network. Rusz et al. [111] evaluates the use of
smartphone speech recordings for early PD detection. The system was tested
on 50 patients suffering from RBD and promising alterations in the speech pat-
tern of prodromal PD subjects was obtained. The distinction between HC and
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RBD patients was obtained with an AUC of 0.69, a sensitivity of 69.8% and a
specificity of 64.7%.

4.3. Handwriting Analysis

The analysis of handwriting has proven effective in the diagnosis and progres-
sion monitoring of PD patients [18]. Handwriting is a complex activity involving
both cognitive and motor functions. As the disease progresses and affects the
brain centers responsible for its motor aspects, several abnormal characteristics
of the handwriting activity can be observed. Micrographia, a reduction in the
size of written text, is very often present in patients with PD. Bradykinesia and
tremor also affect the ability of controlling the motions involved in writing. Such
anomalies can be monitored either through static and/or dynamic approaches.

Static approaches. Refer to the graphical feature analysis of written text.
The graphical characteristics are used to analyze the extent of micrographia
and the randomness of strokes generated by tremor related movements. Typical
metrics include changes in size of written characters, height of loop patterns,
area of text blocks, pixel density variations based on ink content [114], density
and height ratios, spiral precision index [115]. Besides providing an estimate of
disease severity, these types of studies also allow for longitudinal tracking of PD
progression and the identification of prodromal symptoms. For instance, Zhi et
al. [114] explores the potential of using static analysis on historical signature
based writing samples in the study of disease progression for 10 PD patients.

Dynamic approaches. Look at the kinematics of handwriting. In this
case, symptoms related to bradykinesia, tremor and rigidity are assessed by
also analyzing the on-surface and in-air movements associated with writing.
Dynamic methods make use of digital tablets, smart pens with axial pressure
of ink and tri-axial accelerometers [116] and EMG [115]. Depending on the
modality of recording, different features are extracted. Digital tablets can usu-
ally record the point of contact (x and y directions) and pressure information.
Several kinematic features are extracted including: speed of writing, changes in
acceleration and velocity, writing duration and length, jerk, stroke length, de-
scriptive statistical measures [117], the rate of pressure change with respect to
time [118]. Smart pens in combination with digital tablets allow for additional
tracking of in-air movements [116, 119]. Bradykinesia is assessed by calculating
the movement time and velocity, whereas tremor by analyzing the frequency
content of the pen tip trajectory during rest. The use of EMG was explored
by Loconsole et. al [115] and specific signal features are extracted: root mean
square, mean absolute value, zero crossings of the EMG signal.

Classification Algorithms. Machine learning algorithms are used for clas-
sification of the PD or HC states. Drotar et al. [118] use SVM in several hand-
writing classification tasks. This classification method obtained an accuracy of
81.3% on the kinematic and pressure features database PaHaW, composed of
37 PD patients and 38 HC [118]. Loconsole et al. [115] observed that SVM
outperforms artificial neural networks with and without PCA based feature re-
duction on a smaller EMG database. Deep learning methods were also used by
Pereira et al. [116]. The authors developed a convolutional neural network for
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handwritten dynamics differentiation on the HandPD dataset comprised of 74
PD and 18 HC.

4.4. Face Video Analysis

In the process of PD neurodegeneration, neurons from the basal ganglia start
dying leading to dysfunctions in the neuronal circuits controlling facial muscles.
As a result, some PD patients suffer from hypomimia, a reduction in the facial
muscle movements (facial bradykinesia).

Hypomimia in Parkinson’s disease is quite a recent research topic and ef-
forts are being made to better characterize these movement deficits. Gunnery
et al. [120] used videos of participants mentioning pleasant activities to map
spontaneous facial expressions in PD. The analysis was performed by extracting
facial action units and characterizing features such as onset, offset and apex.
Similarly, Livingstone et al. [121] used EMG to study facial muscle reaction dur-
ing presentations of calm, happy, sad, angry and fearful emotions. Hypomimia
was observed with a reduction in EMG amplitudes and delayed onset in the
muscles controlling smiling. The video based analysis of facial expressions in
PD patients relies on the general knowledge available for video facial emotion
recognition and focuses on distinguishing healthy controls from diseased indi-
viduals. Bandini et al. [122] used a Multi-class SVM to train a facial expression
recognition model from benchmarked databases. The test dataset comprised
videos from both PD and HC. The performance of the model is proposed as an
indication of hypomimia effects.

4.5. Brain Imaging

Some of the most common Parkinson’s disease biomarkers are the changes
observed in brain tissue through non-invasive imaging techniques. The iden-
tification and characterization of such biomarkers is important for placing an
initial diagnostic and following disease progression. Perhaps the most relevant
application is the use of brain imaging biomarkers for the differential diagnostic
between PD and other neurodegenerative diseases with similar early symptoma-
tology. Unlike the case of Alzheimer’s disease, where brain imaging biomarkers
have been extensively studied through computational approaches and specifi-
cally machine learning techniques [123], the automatic analysis of PD biomark-
ers is at an incipient stage.

Topics addressed . Brain imaging biomarkers are identified and character-
ized through the automatic analysis of MRI, SPECT or PET images with the
purpose of differentiating between PD and HC [124, 125, 126, 127, 128], but
also between PD and other neurodegenerative diseases (e.g., MSA [129, 130],
PSP [131]). Haller et al. [124] used MRI diffusion tensor imaging with specific
features extracted for the classification of PD vs. HC. For the early stage dif-
ferentiation of PD from HC, MSA and PSP, Marquad et. al [130] studied the
extraction of different anatomical features from the whole brain and a subcor-
tical motor network with its component regions.

Features. The feature extraction process focuses not only on the type of
information that could result in PD biomarkers, but also on the brain location
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from where they are extracted [125, 126]. As PD affects different regions of
the brain throughout different stages of progression, selecting the most proba-
ble brain area where the disease might manifest is relevant especially in early
detection and differential diagnosis. Peng et al. [126] determined that the best
classification results were obtained from the frontal, parietal, limbic and tem-
poral lobes and the central region. With regard to the type of features, these
can be voxel based morphometric features or low level features related to the
volume of grey matter, white matter and cerebral spinal fluid, but also high level
features that represent the structural connectivity [126]. Singh et al. [128] pro-
posed an unsupervised feature extraction method In combination with a least
square SVM, PD data was distinguished from HC data with a 99% accuracy in
a hold out validation procedure.

Classification Algorithms. The most used algorithm for all the classifi-
cation problems is SVM with different implementations [131, 125, 126]. Adeli
et al. [125] obtained the best performance with a LDA classifier in combination
with a joint feature sample selection for PD detection on the PPMI database.
Hirschauer et al. [127] build an enhanced probabilistic neural network (EPNN)
with four layers for classifying PD patients with respect to HC. The use of
EPNN resulted in a classification accuracy of 92%.

4.6. Multimedia Approaches

The symptoms affecting PD patients can be diverse and monitoring only
one of them might be insufficient for providing a good estimate of the disease
progression. Using multiple modalities for assessing the patient’s state could
be beneficial. These can also be integrated in the day to day activities of the
patient, not only to monitor the disease progress, but also the effectiveness of
the treatment and adherence to medication.

Mobile Applications. The HopkinsPD is an application proposed by Zhan
et. al [132] that aims to remotely monitor PD symptoms through a smartphone
platform. Five symptom types are analyzed: voice dysphonia, postural insta-
bility while standing up, gait - bradykinesia, reduced dexterity and rest tremor.
Data is collected from the phone microphone, accelerometer sensor, push of a
button and different self evaluation questionnaires. The study was deployed
world wide through a mobile application and recorded data from 221 PD and
105 HC. An accuracy of 71% was reached. A similar approach was implemented
by Neto et al. [133] by using iPhone sensor data for medication response de-
tection. The best performing classification algorithm on the specific features
extracted were tree based tests, including random forest. In the work of Adams
et al. [134], keystrokes recorded with the App-Tappy application were used
for classifying early PD and HC. The features extracted included hold time,
statistic measures, latency measures and statistics on latency. Several machine
learning algorithms were tested.

Other smartphone applications focus on assessing dexterity of PD patients [135,
136]. Aghanavesi et. al [136] used a smartphone to track how subjects per-
formed tapping and spiral drawing tests. Several features were extracted and
pre-processed using PCA. The best result for predicting PD symptom severity
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Table 4: Overview of the most relevant research works using machine learning in handling
Parkinson’s disease that were presented in this work. Brief details are provided on the dataset
size and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref

PD vs. HC ground reaction force 29PD, 18HC SVM LOO 93.6% [74]

PD vs. HC ground reaction force 93PD, 73HC LSTM,
CNN

hold out 98.7% [83]

PD vs. HC speech data 50PD, 50HC SVM 10fold CV 91.3% [110]

PD vs. HC handwriting dynamics 37PD, 38HC SVM 10fold CV 81.3% [118]

PD vs. HC handwriting dynamics 74PD, 18HC CNN hold out 95% [116]

PD vs. HC MRI 518PD, 245HC SVM CV 99% [128]

PD vs. HC MRI 200PD, 375HC EPNN hold out 92% [127]

PD vs. HC speech data, hand-
written dynamics,
gait signals

44PD, 41HC CNN,
SVM

hold out 97.6% [138]

symptom
severity

accelerometer 12PD SVM LOO 90% [84]

severity of
tremor

accelerometer 18PD, 5HC HMM LOO 82% [93]

detect FoG inertial sensors 21PD CNN hold out 90% [87]

detect
dyskinesia

accelerometer 5HC, 14PD
with D, 10PD

ANN LOO 84.3% [96]

medication
effect

speech data, ac-
celerometer, push of
a button, question-
naires

221PC, 105HC RF 10fold CV 71% [132]

was obtained using a SVM classifier which resulted in a high correlation with
the UPDRS ratings of each participant.

Speech and writing . Afonso et. al [137] have used deep learning methods
for assessing PD based on voice analysis and dynamic techniques for writing
assessment. A deep optimum-path forest clustering technique was used on 31
PD and 35 HC performing hand movements and drawing with a biometric pen
incorporating a michrophone, finger grip, axial pressure of ink, tilt and acceler-
ation. In the work of Correa et. al [138], speech, handwriting and gait signals
are analyzed in a database containing 44 PD patients and 40 HC. A CNN is
used for the multimodal analysis of PD patient data. The features obtained
from the last hidden layer of the CNN are placed into a subject specific feature
vector and fed to an SVM classifier.

4.7. Summary

An abundance of literature is available on the characterization of PD motor
symptoms with computational approaches. The most focus is in the area of
altered movement patterns. Speech disorders caused by PD have also been
often investigated as speech is easy to record and the field of voice analysis has
significant history. A summary of the most prominent works using machine
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learning for PD characterization presented in this literature review is available
in Table 4.

5. Huntington’s Diseases

This section presents a review of the prominent computational approaches
used in the diagnosis and monitoring of Huntington’s disease. Its prevalence
is significantly lower than in the case of AD and PD. As a consequence, the
amount of studies conducted with the purpose of developing computational
approaches for its monitoring and diagnosis is significantly smaller. The gait of
HD patients is characterized by uncontrolled, hyperkinetic movements such as
chorea and dyskinesia. Automatic monitoring of motor symptoms can be useful
in analyzing disease progression.

5.1. Gait Abnormalities

Classification of HD. The gait of HD patients presents significant dif-
ferences from that of HC and these differences are still a subject of research.
In the study presented by Pyo et. al [139], the step length, stride length and
base support and their corresponding coefficients of variation of HD patients
proved to be increased when compared to HC. Mirek et. al [140] used mag-
netic trackers to calculate the gait cycles. Results show the HD patients present
insufficient flexion in the plantar and knee joints and excessive flexion of the
hip when compared to normal gait parameters. Automated classification of HD
gait signals has also been investigated. Manini et. al [141] uses inertial sensors
attached to the ankles and the lumbar region to record stance and swing in 10
HD patients rated according to the UHDRS scale (Unified Huntington’s Disease
Rating Scale - clinical assessment of HD severity), 10 post-stroke patients and
10 HC. A HMM was trained in a supervised way to recognize the foot strike
and toe off events with a delay of 20ms.

Differential Diagnosis. Mann et. al [142] also used a magnetic tracker for
analyzing the motion of arms of PD and HD subjects. The movements caused
by the two neurological disorders and recorded with the magnetic trackers were
characterized by their amplitude, frequency, dispersion, entropy and other sta-
tistical features. By studying the subtle differences in abnormal movements, a
more accurate initial diagnosis can be provided. For instance, Dinesh et al. [143]
place a wearable sensor (BioStampRC) on the arms and legs of 10 PD, 10 HC
and 15 HC for motion characterization in a simple walking test. The signals
recorded included 3D accelerometers, ECG and EMG. The features extracted
showed a good visual discrimination between the three conditions.

5.2. Speech Impairments

Basal ganglia neurodegeneration leads to motor impairments which might
affect the muscles involved in speech production. Different diseases might cause
different types of abnormalities in muscle control and hence in the produced
speech. Differentiation between HD and other neurodegenerative diseases such
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as PD, MSA and PSP, based on voice recordings, was proposed by Rusz et.
al [144]. Repetitions of the ’pa’ syllable where characterized by features rep-
resenting rhythm instability and acceleration through the detection of syllable
onset. The accuracy of the syllable onset detector was of 99.6% and the visual
observation of the features showed discrimination power between syndromes.
Novotny et. al [145] characterized PD and HD dysarthia by also looking at syl-
lable onset in ’pa-ta-ka’ repetitions using the Hilbert transform. The accuracy
of PD syllable onset detection was of 90%, while for HD it was 80%.

5.3. Biomarkers

5.3.1. Brain Imaging

Brain imaging is considered one of the most reliable methods used for con-
firming a HD diagnosis. Several works have focused on the development of (i)
MRI biomarkers for the characterization of HD and their presence (ii) prior to
disease onset.

Classification of HD . Rizk-Jackson et al. [146] uses a database of MRIs
of 39 HD and 25 HC patients to extract region-based and voxel-based features
from white and grey matter. Using an LDA classifier a balanced accuracy of
76% was obtained for differentiating HD and HC.

Pre-onset HD detection . Although HD is a genetic disease and carriers
of the huntingtin gene are already aware they will develop the disease, the exact
onset is not yet predictable. Several studies have tried to identify pre-HD signs
through brain imaging biomarkers several years prior to disease onset. For HD
carriers, an MRI scan is typically taken every 2 years. In practice, that is not
always the case. Eirola et. al [147] proposed an extreme learning machine
with a hidden layer of 1,000 neurons for predicting the onset of HD 10 years
in advance. The output result showed an accuracy of 80-90% over the entire
10 year period. In the Predict-HD study, the MRI scans from a total of 95
preHD subjects and 95 HC subjects were used for predicting HD several years
before onset. Information was extracted from the gray matter of several regions
of interest and fed to a multivariate SVM. By selecting the region of interest,
an accuracy of 83% was obtained. The performance of the classification of the
preHD subjects increased as time to onset decreased. Mason et. al [148] used
the Track HD consortium data with MRI scans from 19 preHD and 21 HC
subjects to extract both structural and connectivity measures. Using a linear
support vector machine preHD was identified 5 years prior to disease onset and
a maximum accuracy of 88% was obtained. DTI was also used by Karistianis
et al. [149] in obtaining biomarkers for the preHD versus HC discrimination.
Different tests were performed for extracting features either from the whole
brain or from specific regions. A quadratic discriminant analysis showed a
good discrimination power for the volumetric reduction and increased fractional
anisotropy in the basal ganglia up to 15 years prior to onset.

5.3.2. EEG Signal

As Huntington’s disease also implies cognitive and psychological impair-
ments, changes in the activity of the brain might also be observed in the EEG
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Table 5: Overview of the most relevant research works using machine learning in handling
Huntington’s disease that were described in this work. Brief details are provided on the dataset
size and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref

HD vs. HC EEG 26HD, 25HC SVM 10fold CV 83% [151]

HD vs. HC MRI 39HD, 25HC LDA 4fold CV 76% [146]

HD onset MRI 1370HD ANN hold out 90% [147]

HD onset MRI 19preHD, 21HC SVM LOO 88% [148]

discriminate
stance and
swing

inertial sen-
sors

10HD, 10HC HMM - 20ms
error

[141]

measurements. Tommaso et. al [150] analyzed recordings from 13 HD in or-
der to extract possible EEG biomarkers. Features extracted from the Fourier
transform of EEG signals were fed into an artificial neural network classifier
which correctly predicted 11 out of 13 subjects as containing the HD gene.
Odish et. al [151] went further to create an EEG index on 2 seconds Fourier
transformed data. The proposed method was tested by selecting the adequate
features through PCA and training an SVM model. The classification was tested
on 26 HD gene carriers and 25 HC resulting in an accuracy of 83%.

5.4. Summary

As Huntington’s disease is less prevalent in the population and has a strong
genetic correlation, fewer research works investigating HD were found when
compared to publications investigating AD or PD. Machine learning techniques
are used in the study of HD to bring more clarity on the onset of the disease.
A summary of the most prominent works presented in this work using machine
learning for HD is available in Table 5.

6. Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis is a severe motor neurodegenerative disease
with a rapid progression and a low prevalance when compared to other neu-
rodegenerative diseases. Studies that rely on computational approaches focus
mostly on providing an aid to ALS diagnosis, most frequently looking at a better
differentiation from other neurodegenerative diseases at incipient phases with
predominant motor abnormalities such as PD, HD or MSA.

6.1. Gait Abnormalities

Characterization of gait in neurodegenerative diseases, particularly in ALS,
HD and PD, has been performed by Hausdorff et. al [152] by recording the
magnitude, duration of stride-to-stride fluctuations and perturbations in the
fluctuations dynamics by using force sensors placed on the feet of the subjects.
The gait of ALS patients was less steady and more temporarily disorganized. No
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other studies using other databases (private or public) characterizing gait dy-
namics of ALS patients were found by the authors. Using the neurodegenerative
diseases gait dynamics database, Dutta et. al [153] automatically identified the
different disorders from healthy controls using several features extracted from
a cross-correlogram with an Elman’s recurrent neural network with one hidden
layer. The result for binary classification (ALS vs. HC) was in the range of
90.6% to 97.8% average accuracy. Xia et. al [154] used the Teager Energy Op-
erator to extract features for an SVM classifier. The proposed method resulted
in an accuracy of 92.86%.

6.2. Speech Impairments

The muscles involving speech production are also affected in amyotrophic
lateral sclerosis. ALS speech abnormalities were investigated by Yunusova et.
al [155] through features as articulatory rate, duration of speech and pauses. The
aim of the study was to evaluate the effect on speech of diseases predominantly
characterized by motor deficits and those with a predominant cognitive deficit.
In this case, significant statistical differences were observed between features
extracted from the speech of ALS subjects when compared to the speech of
fronto-temporal dementia. Wang et. al [156] investigated the possibilities of
automatically detecting ALS from speech. The proposed method used both
acoustic information and articulatory movement data. The movement data was
recorded with electromagnetic articulograph sensors attached to the tongue and
lips of the participant. Features were extracted from both signal sources and
two classifiers were compared: SVM and a DNN. The SVM was able to classify
ALS speech with an accuracy of 80.91% using both acoustic and movement
data. The DNN resulted in 91.74% accuracy only using acoustic data in a
4-fold cross-validation scenario.

6.3. Video Analysis

For the purposes of early diagnosis and tracking of ALS, Bandini et. al [157]
investigated the use of kinematic features extracted from videos of the face while
ALS and HC subjects were performing both speech and non-speech tasks. As
ALS affects all motor neurons, the muscles of the face are also impaired. Using
a logistic regression classifier, an overall accuracy of 88.9% was obtained when
discriminating between ALS and HC.

6.4. Biomarkers

6.4.1. Brain Imaging

It is used in ALS to investigate its causes and progression. Fekete et. al
[158] used MRI brain scans from 40 ALS and 30 HC subjects to propose an
ALS biomarker based on the organization of brain networks at a functional
level. Features were extracted from the 0.03-0.06 Hz band using a typical image
processing chain: motion correction was applied, followed by a normalization to
the MNI (Montreal Neurological Institute) space and the use of masks for CSF
(cerebrospinal fluid) and white matter extraction. For the classification task,
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Table 6: Overview of the most relevant research works using machine learning in handling ALS
that were presented in this work.Brief details are provided on the dataset size and content,
classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref

ALS vs. HC force sensors 13ALS, 16HC RNN hold out 97.8% [153]

ALS vs. HC force sensors 13ALS, 16HC SVM LOO 92.86% [154]

ALS vs. HC speech data, ar-
ticulatory move-
ment data

11ALS, 11HC DNN LOO 91.74% [156]

ALS vs. HC video data 10ALS Regression LOO 88.9% [157]

ALS vs. HC MRI 40ALS, 30HC SVM LOO 87% [158]

ALS vs. HC EMG 10ALS, 11HC LDA LOO 90% sen-
sitivity

[160]

survival of
patients

MRI 135ALS DNN hold out 84.4% [159]

an SVM with a recursive kernel elimination was used leading to an accuracy,
sensitivity and specificity of 87%, 88% and 88%, respectively. A method for
predicting the survival in ALS patients was proposed by Van der Burgh et.
al [159]. Both MRI and clinical characteristics were studied on 135 ALS patients
classified as short, medium or long-term survivors. A deep neural network was
used for prediction, leading to an accuracy of 84.4%.

6.4.2. EMG Signal

As motor muscles are significantly affected in ALS, using non-invasive EMG
measurements for ALS diagnosis could be a cost effective option for an initial
diagnosis. Zhang et. al [160] investigated several statistical features extracted
from the EMG of ALS patients and HC subjects. These were used with an LDA
classifier. The classification provided a sensitivity of 90% and a specificity of
100% for differentiating ALS and HC subjects from EMG data.

6.5. Summary

The characterization of ALS through computational methods is limited in
the available literature. The study of the disease through machine learning
techniques is still at an early stage. Most research works focus on identifyin ALS
patients from HC. A summary of the research works using machine learning on
ALS that are available in this literature review are presented in Table 6.

7. Multiple System Atrophy

Multiple System Atrophy is a severe neurodegenerative disease that pro-
gresses rapidly after onset. Its prevalence is small and as a consequence the
number of studies using computational approaches for its characterization is
small. Most of these studies focus on providing better methods of diagnosis
in the incipient stages of the disease when the symptoms are confusing. MSA
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bares the closest resemblance to Parkinson’s disease, especially the parkinso-
nian version of MSA (MSA-P). Computational approaches can help in its better
diagnosis by analyzing imaging biomarkers, evaluating speech alterations and
analysis of proteomics data.

7.1. Biomarkers

According to Duchesne et. al [129], the distinction of Parkinson’s disease and
parkinsonian plus syndromes presents an initial error rate of up to 35%. Brain
imaging is generally useful in providing more insights into the correct diagnosis.
Developing biomarkers for automatic detection has been studied by Duchesne et.
al [129] on MRI data from MSA and PD patients. After image pre-processing,
the tissue composition and deformations from the hind brain were evaluated for
their discriminative power. A model created on these features with an SVM least
square optimization algorithm provided an accuracy, specificity and sensitivity
of 91%, 88% or 93% respectively. Similarly, in the study of Marquand et. al
[130] the midbrain was the anatomical region with most discriminative power for
the selection of nerodegenerative biomarkers. The MRI images were collected
from PSP, PD and MSA patients. An SVM model was created, leading to an
accuracy of 91.7% for MSA detection.

7.2. Speech impairments

Due to the degeneration of neurons in the basal ganglia, control of the mus-
cles producing speech might be affected in MSA, particularly in the parkinsonian
variant of the disease. MSA-P presents similar symptoms to PD. The study of
Eun et. al [161] analyzes the differences in speech patterns between the two dis-
eases. Subjects suffering from MSA-P showed more speech impairments than
those with PD, reflected in the voice pitch, prolonged pause time and reduced
speech rate. Soler et. al [162] proposed an analysis of the fundamental fre-
quency of snoring for the identification of MSA patients. Although a slightly
different approach than that of Eun et al. [161], the method analyzes the sounds
produced by the same muscles affected by neurodegeneration.

7.3. Summary

Very few studies looking at MSA with computational approaches were found.
Machine learning techniques are used to help in the differential diagnosis be-
tween MSA and other similar motor disorders. A summary of the studies using
machine learning for MSA from this literature review is available in Table 7.

8. Sleep disorders present in Various Diseases

This section presents an overview of studies analyzing abnormal sleep be-
haviors manifested in several neurodegenerative diseases. More specifically, we
investigate the use of computational approaches used for: REM sleep behavior
disorder and Periodic Leg Movements (with or without restless legs syndrome).
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Table 7: Overview of the most relevant research works using machine learning in handling
ALS. Brief details are provided on the dataset size and content, classification techniques and
evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref

MSA vs. PD MRI 16PSP or MSA, 16PD SVM LOO 91% [129]

MSA vs. PD, PSP MRI 12PSP, 14PD, 19MSA SVM LOO 91.7% [130]

These symptoms are presented separately as they are present in multiple dis-
eases characterized by alpha-synucleinopathies such as PD, MSA or DLB [163]
and have similar clinical characteristics throughout all diseases. RBD and PLM
have been until recently characterized as separate disorders. In recent years,
the link with neurodegeneration has been firmly established. RBD is now con-
sidered as part of alpha-synucleinopathic degeneration and its appearance years
prior to the disease onset is a prodromal symptom [164].

8.1. REM Sleep Behavior Disorder

Rapid eye movement sleep behavior disorder is characterized by the enact-
ment of dreams and unusual motor behavior during REM sleep, more precisely
REM sleep without atonia (RSWA). The prevalance of RBD differs per type
of neurodegenerative disorder. In MSA and DLB, more than 80% of patients
develop RBD. For PD, the number of patients who present RBD symptoms is
lower. Computational methods are used both for the characterization of RBD
from polysomnographic recordings but also for the automatic detection of the
abnormal recordings related to RBD.

Characterization of RBD. In recent years, changes in EEG activity in in-
dividuals with RBD have been identified. Brazete et. al [165] have showed that
RBD is linked to a slowing down of EEG activity during wakefulness, with delta
and theta bands presenting higher spectral powers in RBD patients versus HC.
Ruffini et. al [166] also investigated EEG complexity during awake EEG record-
ings using Lempel-Ziv-Welch Compression Spectrograms and entropy measures
. RBD is present in the prodromal phases of multiple neurodegenerative dis-
eases. Berrada et. al [167] attempted to differentiate between RBD patients
who later on develop DLB and patients who develop PD from polysomnographic
recordings and data extracted from clinical, neurological and neurophysiological
exams. By applying an alternating decision tree, the algorithm was able to auto-
matically differentiate only between RBD and HC subjects, with no significant
results on the DLB or PD conversion.

Automatic Detection. The automatic detection of RBD patients from HC
subjects is of interest for the reduction in time required for placing a diagnostic.
Several threshold EMG based methods have been proposed [168, 169]. Cesari
et. al [169] compare several available threshold-based methods. The Frandsen
Index method outperformed the others with average sensitivity values of 90%
for RBD patient detection. Kempfner et. al [170] proposed an RBD detec-
tion method based on the entire polysomnographic recording. Subject specific

33



features were extracted from all signals and were used as input to an SVM
classifier. The area under the curve in a leave-one-out testing scenario was 0f
0.988 when using all signals and 0.981 when using only EMG activity. Ruffini
et. al [171] proposed an automatic detection method for RBD based on awake
EEG recordings. Two classification algorithms were proposed and compared: a
DCNN with a 5-layer architecture and a Recurrent Neural Network with three
stacked LSTM cells. The DCNN provided the best results with a classification
accuracy of 80% between RBD patients and HC in a leave-one-out validation
scenario.

8.2. Restless Legs Syndrome and Periodic Limb Movement

Periodic limb movements appear in patients with and without Restless leg
syndrome and are characterized by uncontrolled limb movements that occur
during sleep [172]. RLS and PLM are present in movement related neurodegen-
erative disorders. The highest prevalence is in PD patients. Due to a paucity
of studies, it is difficult to establish the prevalence of these movement disorders
in other neurodegenerative diseases. Their presence has been observed also in
MSA, PSP and HD [172]. Similar to RBD, the majority of studies including
computational methods focus on the characterization of RLS and PLM or on
their automatic detection either from polysomnographic or actigraphy record-
ings.

Characterization. The characterization of PLM through EMG recordings
during sleep is still a topic of investigation. Different states of RLS and PLM
were investigated by Ferri et. al [173] by introducing a periodicity index and
using Markov chains for the characterization of the structure of leg movement
sequences. Ferrillo et. al [174] investigated the awakenings and EEG arousal
prior and after PLM events. By analyzing the content of EEG signals through
the wavelet transform and extracting the heart rate from cardiac signals, a
significant increase in the heart rate and delta activity power was observed 3 to
4 seconds prior to PLM onset. Similarly, Sieminski et. al [175] looked at the
spectral powers of the alpha, beta and delta bands of the EEG and found an
arousal after PLM activity was detected.

Automatic Detection. The automatic detection of PLM events could re-
duce the time required for manual polysomnographic annotations. Tkach et. al
[176] investigated the stability of time-domain features extracted from EMGs
recorded from several muscles during PLM for their automatic detection. Using
several statistical features and a linear discriminant analysis classifier, an im-
provement of 16% was obtained by feature and recording site selection. On the
other side, Umut et. al [177] investigated the automatic detection of PLM using
all PSG signals except EMG. A combination of Haar wavelet decomposition
and Discrete Fourier Transform was used to extract the power from the delta,
theta, alpha and beta EEG frequency bands. A kNN classifier used in a 10-fold
cross validation scheme provided the highest accuracy of 91.87% for the detec-
tion of PLM events. The use of limb actigraphy might be a good alternative to
PSG for classifying sleep disorders. Several commercial actigraphy devices are
already available and have been tested for their utility in PLM detection. These
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Table 8: Overview of the most relevant research works using machine learning in handling
Sleep Disorders associated to neurodegenerative diseases. Brief details are provided on the
dataset size and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref

RBD vs. HC PSG 16RBD, 16HC SVM LOO AUC
0.988

[170]

RBD vs. HC EEG 121RBD, 91HC DCNN LOO 80% [171]

detect PLM PSG 153PLM kNN 10fold CV 91.87% [177]

include PAM-RL [178], the CE marked actigraphy device KickStrip [179] and
Respironics Actigraphy [180].

8.3. Summary

Most literature available for sleep disorders related to neurodegeneration,
such as PLM or RBD, propose different methods for their characterization. A
few studies use machine learning for their automatic detection from regular sleep
or for differentiating patients from HC. The studies presented in this literature
review using machine learning for sleep disorders are summarized in Table 8.

9. Overview of the Common Processing Steps

After reviewing the relevant literature for the various neurodegenerative dis-
seases, in this section, we identify and analyze the common processing steps
employed by the computational algorithms and machine learning techniques.
They are depicted in Figure 3. We propose a view that divides the classification
process into six blocks. Neurodegenerative diseases and their symptoms are di-
verse and so the types of datasets available for different classification problems
are varied. However, regardless of the data types, similar steps follow in case of
classification problems. The raw data can be directly fed into the classification
algorithm or several pre-processing steps are applied prior to classification. In
some cases, the data might be pre-processed which can imply filtering, normal-
ization or dimensionality reduction. For some studies, different types of features
are extracted and further selected based on specific relevance measures. Regard-
less of the type of pre-processing applied, a classification algorithm is applied
and the result is evaluated.

We detail these aspects in the following: a summary of the datasets available
for training computational methods (see Section 9.1), an overview of the pre-
processing, feature extraction and feature selection methods (see section 9.2), an
analysis of the classification algorithms (see section 9.3) and evaluation methods
(see section 9.4 found in this literature review.

9.1. Datasets

The spectrum of neurodegenerative disorders affects patients in different
ways resulting in a variety of symptoms. The type of signals, protocols and
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Figure 3: Overview of the general steps used in different classification problems for neurod-
generative diseases.

information required to accurately diagnose or monitor these diseases are di-
verse. Therefore the datasets found in the literature proposing computational
approaches show a mixture of recorded data, protocol for recording and size.
The chosen protocol depends on the end goal of the study, e.g., to aid in the
diagnosis of the disease, to monitor progression, to help in the differential diag-
nosis, to detect prodromal stages of the disease etc. Most of the times, the data
collected is disease specific and can not be used for other diseases as it was not
collected with a protocol developed for that purpose.

A high number of studies record specific datasets for their chosen topic of
study such as a small variation in symptoms or different sensor recording modal-
ities. Therefore the amount of data collected is most of the times small, from
a few participants. The majority of the datasets used are small (67.5 %), with
less than 50 participants per class. These datasets tend to be private and tar-
get specific diseases or symptoms. Medium sized datasets (between 50 and 100
participants per class) make up 14.41% of the datasets considered in this study
and large datasets (with more than 100 participants per class) make up 18.07%.
Large and medium size datasets are predominant in all diseases in topics such
as Speech processing, Brain Image analysis, Classification of Tests and Medical
Records or Genetic information. Big sized datasets are generally collected in
consortium or projects spanning multiple years. The majority of large datasets
are made available to the research community free of charge creating the oppor-
tunity for more researchers to work on the development of adequate solutions.
In Table 9, an overview of the most relevant datasets is provided along with
details on their content, availability and size.

9.2. Pre-processing, Feature Extraction and Selection

In some of the studies, when predicting a certain condition or using compu-
tational approaches for placing a diagnostic, features are extracted from the raw
data recorded and fed into a classification algorithm. These features are diverse
and are strongly deendent on the type of input data. Prior to using features as
input to a classifier, it might be useful to select relevant features or to project
these into a more representative space while reducing the dataset dimensions.

When looking at feature selection, most of the studies make use of statistical
measures for eliminating correlated features which add no or little additional
information to the dataset. Statistical methods include computing correlation
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Table 9: Selection of the most relevant datasets found in literature .
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coefficients, t-tests, Whitney U-tests, Kruskal Wallis tests or mutual informa-
tion [61] [194]. Other methods are based on entropy or information gain [195].

More complex feature selection techniques such as forward feature selection
are also used. This technique adds features one by one as input to the classifier
and selects the ones that improve the classification performance [74][196]. It is
not recommended for high volume datasets. Other methods for feature selection
use regression techniques such as LASSO (least absolute shrinkage and selec-
tion operator) or the feature importance computed using the Random Forest
algorithm [112]. Tsanas et. al [112] also uses the RELIEF feature selection
algorithm that also considers the interaction between the different features.

Dimensionality reduction is also employed in some of the studies as a pre-
processing step. The most popular methods are factor analysis [58], principal
component analysis [129, 151], independent component analysis [197] and au-
toencoders [70, 45]. Besides reducing the dimension of the input data set, the
information is projected in different dimensions that might enhance the classi-
fication performance.

9.3. Classification Algorithms

The problems approached can be binary, such as looking at whether a disease
is present or not, or divided into multiple classes, when differentiating between
different diseases or different stages of progression of a disease. The methods
used for classifying the targeted states can be as simple as using threshold-based
algorithms or imply the use of advanced machine learning methods.

Out of the studies considered in this review approximately 64% use machine
learning algorithms. Figure 4 provides an overview of the types of algorithms
used in classification problems. A typical processing chain involves the pre-
processing of raw signals followed by feature extraction and classification. Most
proposed methods make use of supervised learning techniques where a labeled
training set is presented to the classifier for building a model. Such techniques
include Linear Regression, Naive Bayes, SVM, k-NN, Random Forests, Decision
Trees, LDA. By far the most used classifier in all researched diseases is SVM. The
popularity of SVM can also be explained by the problems tackled: a big majority
of the studies look at identifying between patients and healthy controls and
so handling binary classification problems. Shallow and deep neural networks
have also been used, but they are not as popular as the more conventional
algorithms enumerated before. Some studies use different combinations and
variations of MLP, CNN, DNN, ANN. Other types of classification algorithms
look into more elaborated network architectures such as EasyMKLFS, Extreme
Learning, Probabilistic Neural Networks, Gaussian Neural Networks and Deep
Belief Networks. Unsupervised learning was also attempted in more recent years
via autoencoder networks. Deep neural networks have been more commonly
used in studies using images as input for analysis, and are gaining more and
more traction nowadays.
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Figure 4: Overview of the employed classification algorithms (as analyzed in this review) rep-
resented on a per disease basis. The most encountered algorithms include: Th-b - threshold
based, LR - Linear Regression, NB - Naive Bayes, SVM - Support Vector Machines, kNN -
k-nearest Neighbours, RF - Random Forests, DT - Decision Trees, LDA - Linear Discrimi-
nant Analysis, MLP - Multilayer Perceptron, CNN - Convolutional Neural Networks, ANN -
Artificial Neural Networks.

9.4. Evaluation Metrics

We overview the common practices for assessing the performance of the
computational systems. This brings into discussion the way the data is used for
training the systems and the metrics employed for assessing the actual perfor-
mance.

9.4.1. Data splitting

Although the commonly employed practices for training and validating the
systems are the ones used in machine learning, there are some adaptations to
the specificity of the data. We overview here the common practices: k-fold
cross-validation — It tests the performance of the model on different unseen
portions of the same type of data. The entire available data set is split intro
k-folds of equal size. From this division, k-1 folds are used for the training and
the kth fold for testing. Besides providing an indication of how the model would
react to unseen data, it can also be useful when handling large amounts of data
as the data is fed into the training and test phases in folds and not through
large blocks; leave-one out - It is typically used with small datasets when using
k-fold cross-validation would significantly reduce the amount of data available
for training. In this case, the data from one subject is kept for testing, while
the rest of the subjects are used for training. The testing and training sets
are rotated until all subjects have been used for testing. Another variation of
the leave-one-out validation is the leave-one-record out, where instead of using
subjects, only one record (unit of the data set) is used for testing while the
others are used in training. This technique is more resource consuming than k-
fold cross-validation and is generally not recommended for large datasets; hold
out - Part of the data set is kept for training while the other for testing. A
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typical division would be 80% training and 20% testing, but variations exist.
By dividing the data set, this validation allows the evaluation of performance
on completely unseen data. However, the single division into test and train
sets can lead to a local optimum result, which would not generalize well to a
real-world scenario.

9.4.2. Metrics

Among the exiting metrics employed in machine learning and information
retrieval, some are more predominantly found when dealing with data from neu-
rodegenerative diseases. We present here the most prevalent ones: accuracy —
represents the ratio between the total number of correct predictions and the
total number of predictions. It does not provide insights into the rate of true
positive and true negative predictions while also ignoring per-class performance
evaluation. An algorithm for differentiation between different diseases can have
a high predictive power for one disease and an extremely low one for a differ-
ent diseases. However, the overall accuracy would be at an acceptable level;
specificity (true negative rate) — represents the number of true negatives from
the total number of predictions that are correctly identified; sensitivity (recall
or true positive rate) — represents the number of true positives over the total
number of predictions. It gives an indication of how well the algorithm detects
specific classes; Area Under the Curve (AUC) — it is a method suitable for
evaluating multi-class problems. It estimates the area under the receiver op-
erating characteristic curve (ROC) which relates the true positive to the true
negative rates at different settings of the classifier; F1-Score — represents a
harmonic mean between precision (positive predictive value) and recall (prob-
ability of detection); Cohen’s Kappa coefficient — is a statistical method that
is typically used to quantify inter-rater agreement. The Kappa coefficient is
computed between test labels and the predicted values obtained as output from
the classification; Correlation coefficient — provides a measure of the strength
of similarity between the prediction result and the desired output.

10. Conclusions and Future Challenges

In this review, we provided an overview of the general trends in employing
computational approaches for the monitoring and diagnosis of neurodegener-
ative diseases. We have focused our efforts on five neurodegenerative diseases
representative for the entire spectrum of neurodegeneration: AD, PD, HD, MSA
and ALS. Neurodegenerative diseases have been extensively studied in recent
years with the help of computational approaches, especially via traditional ma-
chine learning or deep learning networks. Diseases that present a higher occur-
rence rate, such as Alzheimer’s and Parkinson’s disease, are more often inves-
tigated. The higher economic burden imposed by more prevalent diseases has
pushed for faster results and led to more solutions for automatic diagnostic and
health assessment systems. Many solutions propose methods that incorporate
classification algorithms.
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10.1. Current State of Research

Datasets and Evaluation . Many small, closed datasets tailored to specific
diseases and symptoms are used in the existing research. Surprisingly, larger
datasets are mostly public. However, the available annotated data is not yet
capable of coping with the actual requirements of deep neural networks, to
allow maximum performance. Another aspect is the large variation in proposed
evaluation techniques and metrics, which makes results difficult to compare,
even on the same data set. Usually, the same data set is used for training
and testing with different data folds. Testing on different collections than the
ones used for learning is not as common. There is no consensus on evaluation
metrics. Confusion matrices are rarely used even when dealing with multi-class
problems. Disease specific scales are used as a golden standard only for PD,
e.g., UPDRS and H&Y, but similar scales are rarely used as a reference for the
other neurodegenerative diseases.

Challenges in Computational Approaches. Most computational meth-
ods proposed for the study of neurodegenerative diseases make use of shallow
networks and handcrafted features. Deep learning networks along with the ex-
traction of features in an unsupervised manner might improve the performance
of classification solutions. Since for some diseases and symptoms the data used
for classification and study is scarce, Generative Adversial Networks can be used
to generate more datasets. Transfer learning techniques can also be considered
when studying different diseases with similar symptomatology. For instance, if
a large data set for RBD or PLM recorded from PD patients is available, an
algorithm can be developed and transfered to ALS or MSA sleep studies. The
same could be applied for gait or speech abnormality detection.

10.2. Directions for development

Possible Research Directions. The authors have identified some areas
that might be worth investigating: (i) Sleep in AD - can show the effect of
medication on the lifestyle of the patient; (ii) Differential diagnosis based on
speech - speech analysis for motor diseases such as PD, HD, MSA and ALS,
lexical analysis for AD and other dementias. Using speech for differential di-
agnosis can be advantageous as microphones are available in many consumer
devices; (iii) Use of EEG - biomarkers can be developed for all neurodegenera-
tive diseases. As EEG technology is non-invasive and less expensive than brain
imaging, it can bring advantages and simplify the diagnostic process. Wearable
EEG headsets can open even more possibilities in the diagnosis of neurodegen-
erative diseases; (iv) Memory testing applications - differentiate between AD
or other dementing diseases and MCI. Memory tests are currently delivered by
medical professionals. By developing applications that focus on the ease of use,
the diagnostic process can be simplified and made more accessible, while at the
same time allowing for disease tracking; (v) Dual tasking - early onset detection
and tracking of dementing and mixed neurodegenerative disorders. By devel-
oping tasks that monitor both the cognitive ability and the motor functions of
a patient, the progress of disease and risk for further injury can be determined.
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Dual tasks can be designed with the purpose of measuring the cognitive reserve
of a patient. The concept of cognitive reserve is related to the ability of the
brain to re-purpose its networks to counter the effects of neurodegeneration.
In recent research, the presence of a higher cognitive reserve is indicative of a
delayed disease onset or milder symptoms [198].

Applications. Few real-life available applications have been identified by
the authors. Usability and adoption by the users was not detailed. Most of
the identified applications were developed for PD. These make use of wearable
inertial sensors or smartphones. The development is generally limited to one
particular disease. As the classification of neurodegenerative diseases is discrete,
based on clinical symptoms, the initial diagnosis is difficult as symptoms overlap.
As the cause of the disease is not yet known and they cannot yet be treated, dis-
ease management focuses on managing the symptoms. An integrative approach
looking as neurodegeneration as a continuum could take information from mul-
tiple sources (gait, voice, sleep, EEG, brain imaging etc.). This would provide a
global view on the disease. Thus allowing a better analysis of the symptoms and
a subsequent better treatment management. It might also improve the initial
diagnosis. The prediction of disease appearance and onset can also be improved
by further developing techniques such as EEG biomarker extraction or sleep
characterization. Although brain imaging is a powerful tool in disease diagnosis
and monitoring, it is expensive, not easily accessible and might be difficult to
use once the disease has advanced significantly. By providing more ubiquitous
technologies for tracking, such as wearables, the progression and response to
medication might be better observed.
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À. Bayés, S. Alcaine, B. Mestre, A. Prats, M. C. Crespo, T. J. Counihan, P. Browne,
L. R. Quinlan, G. Laighin, D. Sweeney, H. Lewy, J. Azuri, G. Vainstein, R. Annicchiarico,
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for detection and prediction of freezing of gait in Parkinson’s disease, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 7988 LNAI (2013) 144–158. doi:10.1007/978-3-642-39712-7-11.

[90] J. Kim, R. Gupta, M. V. Segbroeck, D. Bone, M. P. Black, Z. I. Skordilis, Z. Yang, P. G. Geor-
giou, S. S. Narayanan, Automatic Estimation of Parkinson’s Disease Severity from Diverse
Speech Tasks, Proceedings of the Annual Conference of the International Speech Communi-
cation Association, INTERSPEECH (2015) 914–918.

[91] S. Aich, P. M. Pradhan, J. Park, N. Sethi, V. S. S. Vathsa, H. C. Kim, A validation study
of freezing of gait (FoG) detection and machine-learning-based FoG prediction using esti-
mated gait characteristics with a wearable accelerometer, Sensors (Switzerland) 18 (2018).
doi:10.3390/s18103287.

[92] A. M. Handojoseno, J. M. Shine, T. N. Nguyen, Y. Tran, S. J. Lewis, H. T. Nguyen, The de-
tection of Freezing of Gait in Parkinson’s disease patients using EEG signals based on Wavelet
decomposition, Proceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBS (2012) 69–72. doi:10.1109/EMBC.2012.6345873.

[93] G. Rigas, A. T. Tzallas, M. G. Tsipouras, P. Bougia, E. E. Tripoliti, D. Baga, D. I. Fotiadis,
S. G. Tsouli, S. Konitsiotis, Assessment of tremor activity in the parkinsons disease using
a set of wearable sensors, IEEE Transactions on Information Technology in Biomedicine 16
(2012) 478–487. doi:10.1109/TITB.2011.2182616.

[94] N. Kostikis, D. Hristu-Varsakelis, M. Arnaoutoglou, C. Kotsavasiloglou, A smartphone-based
tool for assessing parkinsonian hand tremor, IEEE Journal of Biomedical and Health Infor-
matics 19 (2015) 1835–1842. doi:10.1109/JBHI.2015.2471093.

48



[95] M. I. Chelaru, C. Duval, M. Jog, Levodopa-induced dyskinesias detection based on the
complexity of involuntary movements, Journal of Neuroscience Methods 186 (2010) 81–89.
doi:10.1016/j.jneumeth.2009.10.015.

[96] M. G. Tsipouras, A. T. Tzallas, D. I. Fotiadis, S. Konitsiotis, On automated assessment of
Levodopa-induced dyskinesia in Parkinson’s disease, Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2011) 2679–
2682. doi:10.1109/IEMBS.2011.6090736.

[97] A. Salarian, H. Russmann, C. Wider, P. R. Burkhard, F. J. Vingerhoets, K. Aminian,
Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambula-
tory monitoring system, IEEE Transactions on Biomedical Engineering 54 (2007) 313–322.
doi:10.1109/TBME.2006.886670.

[98] B. T. Cole, S. H. Roy, C. J. De Luca, S. H. Nawab, Dynamical learning and tracking of
tremor and dyskinesia from wearable sensors, IEEE Transactions on Neural Systems and
Rehabilitation Engineering 22 (2014) 982–991. doi:10.1109/TNSRE.2014.2310904.

[99] P. Angeles, Y. Tai, N. Pavese, S. Wilson, R. Vaidyanathan, Automated assessment of
symptom severity changes during deep brain stimulation (DBS) therapy for Parkinson’s
disease, IEEE International Conference on Rehabilitation Robotics (2017) 1512–1517.
doi:10.1109/ICORR.2017.8009462.

[100] T. Khan, Parkinson’s Disease Assessment Using Speech Anomalies: A Review (2008).

[101] J. Orozco-Arroyave, F. Honig, J. Arias-Londono, J. Vargas-Bonilla, S. Skoda, J. Rusz,
E. Noth, Automatic Detection of Parkinson ’ s Disease in Running Speech Spoken in Three
Different Languages (2014) 1–24.

[102] M. A. Little, P. E. Mcsharry, E. J. Hunter, J. Spielman, L. O. Ramig, Suitability of Dys-
phonia Measurements for telemonitoring of Parkinson’s Disease, Nature 63 (2009) 502.
doi:10.1109/TBME.2008.2005954.

[103] J. C. Vásquez-Correa, J. Serra, J. R. Orozco-Arroyave, J. F. Vargas-Bonilla, E. Nöth, Effect of
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in-air movement in handwriting: A novel marker for Parkinson’s disease, Computer Methods
and Programs in Biomedicine 117 (2014) 405–411. doi:10.1016/j.cmpb.2014.08.007.

[187] B. E. Sakar, M. E. Isenkul, C. O. Sakar, A. Sertbas, F. Gurgen, S. Delil, H. Apaydin,
O. Kursun, Collection and analysis of a Parkinson speech dataset with multiple types of
sound recordings, IEEE Journal of Biomedical and Health Informatics 17 (2013) 828–834.
doi:10.1109/JBHI.2013.2245674.

54



[188] M. E. Isenkul, B. E. Sakar, O. Kursun, Improved spiral test using digitized graphics tablet
for monitoring Parkinson’s disease (2014) 171–175. doi:10.13140/RG.2.1.1898.6005.

[189] C. Taleb, M. Khachab, C. Mokbel, L. Likforman-Sulem, Feature selection for
an improved Parkinson’s disease identification based on handwriting (2017) 52–56.
doi:10.1109/asar.2017.8067759.

[190] K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner, T. Simuni, et. al, The Parkin-
son Progression Marker Initiative (PPMI), Progress in Neurobiology 95 (2011) 629–635.
doi:10.1016/j.pneurobio.2011.09.005.

[191] J. S. Paulsen, D. R. Langbehn, J. C. Stout, E. Aylward, C. A. Ross, M. Nance, M. Guttman,
S. Johnson, M. MacDonald, L. J. Beglinger, K. Duff, E. Kayson, K. Biglan, I. Shoulson,
D. Oakes, M. Hayden, Detection of Huntington’s disease decades before diagnosis: The
Predict-HD study, Journal of Neurology, Neurosurgery and Psychiatry 79 (2008) 874–880.
doi:10.1136/jnnp.2007.128728.

[192] S. J. Tabrizi, D. R. Langbehn, B. R. Leavitt, R. A. Roos, A. Durr, D. Craufurd,
C. Kennard, S. L. Hicks, N. C. Fox, R. I. Scahill, B. Borowsky, A. J. Tobin, H. D.
Rosas, H. Johnson, R. Reilmann, B. Landwehrmeyer, J. C. Stout, Biological and clini-
cal manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-
sectional analysis of baseline data, The Lancet Neurology 8 (2009) 791–801. URL:
http://dx.doi.org/10.1016/S1474-4422(09)70170-X. doi:10.1016/S1474-4422(09)70170-X.

[193] H. M. Gray, L. Tickle-Degnen, A meta-analysis of performance on emotion recognition tasks
in Parkinson’s disease., Neuropsychology 24 (2010) 176–191. doi:10.1037/a0018104.

[194] S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Troester, M. Plotnik, J. Hausdorff, Online
Detection of Freezing of Gait with Smartphones and Machine Learning Techniques, Proceed-
ings of the 6th International Conference on Pervasive Computing Technologies for Health-
care (2012) 123–130. URL: http://eudl.eu/doi/10.4108/icst.pervasivehealth.2012.248680.
doi:10.4108/icst.pervasivehealth.2012.248680.

[195] M. Dyrba, F. Barkhof, A. Fellgiebel, M. Filippi, L. Hausner, K. Hauenstein, T. Kirste, S. J.
Teipel, Predicting Prodromal Alzheimer ’ s Disease in Subjects with Mild Cognitive Impair-
ment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and
Magnetic Resonance Imaging Data (2015) 1–10. doi:10.1111/jon.12214.

[196] Z. Galaz, J. Mekyska, Z. Mzourek, Z. Smekal, I. Rektorova, I. Eliasova, M. Kostalova,
M. Mrackova, D. Berankova, Prosodic analysis of neutral, stress-modified and rhymed
speech in patients with Parkinson’s disease, Computer Methods and Programs in
Biomedicine 127 (2016) 301–317. URL: http://dx.doi.org/10.1016/j.cmpb.2015.12.011.
doi:10.1016/j.cmpb.2015.12.011.

[197] C. Melissant, A. Ypma, E. E. Frietman, C. J. Stam, A method for detection of Alzheimer’s
disease using ICA-enhanced EEG measurements, Artificial Intelligence in Medicine 33 (2005)
209–222. doi:10.1016/j.artmed.2004.07.003.

[198] A. Menardi, A. Pascual-Leone, P. Fried, E. Santarnecchi, The role of cognitive reserve in
Alzheimer’s disease and aging. A multi-modal imaging review, Journal Alzheimer’s Disease
(2018) 1341–1362. doi:10.3233/JAD-180549.

55


