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ABSTRACT
Memorability is a critical aspect of human cognition that has been
studied extensively in various fields, including psychology, educa-
tion, and computer vision. The ability to remember information and
experiences over time is essential for learning, decision-making,
and creating lasting impressions. While the number of computer vi-
sion works that attempt to predict the memorability score of videos
has recently seen a significant boost, thanks to several benchmark-
ing tasks and datasets, some questions related to the performance
of automated systems on certain types of videos are still largely
unexplored. Given this, we are interested in discerning what makes
a video sample easy or hard to classify or predict from a memorabil-
ity standpoint. In this paper, we use a large set of runs, created and
submitted by the participants to the MediaEval Predicting Video
Memorability task, and, using their results and a set of visual, object,
and annotator-based features and analyses, we attempt to find and
define common traits that make the memorability scores of videos
hard or easy to predict.
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1 INTRODUCTION
The study of memory and its capacity for filtering the large quantity
of information humans are constantly bombarded with has been
a subject of interest in research for a significant period of time.
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This domain attracted researchers from many domains like psy-
chology and physiology [20, 23], machine learning and computer
vision [19, 22], and benckmarking tasks, datasets and human-based
surveys [16, 17]. Interestingly, memorability is shown to be an in-
trinsic property of images, that reflects “the extent to which the
image can be remembered by the human mind” [12, 13].

While a substantial number of papers have been dedicated to
studying methods of determining the memorability score of an
image or video sample [16, 22], interest in this domain has signifi-
cantly grown, thanks to the development of benchmarking tasks
that target the creation of automated methods for the prediction of
media memorability. Under the umbrella of the MediaEval Multi-
media Evaluation Benchmark competition1, the Predicting Video
Memorability (PVM) task is now at its fifth edition [24], bringing
at least 7 participating teams during each of its editions, and a to-
tal of 43 participating teams over the five editions. This not only
greatly increases the amount of interest around the subject of media
memorability, but also creates a significant baseline with regards
to determining which methods, processing steps and learners may
positively contribute to the precision of memorability predictor
systems.

2 RELATEDWORK
Previous work on memorability and how it is influenced by various
factors saw studies that target the impact of colors, hues and bright-
ness [5, 22], as well as high-level attributes like the presence and
salience of certain objects [14]. On the other hand, memorability
has been studied along side other concepts like image aesthetics and
social interestingness [9], authors looking for positive or negative
correlations with other concepts related to the subjective perception
of multimedia items.

Our work is built upon the aforementioned 2022 MediaEval
Predicting Video Memorability task [24]. This edition of the bench-
marking task attracted 10 participating teams, that submitted a total
of 33 runs. Participants are asked to develop and train their video
memorability prediction systems on the training data, and submit
their runs and predictions on the testing data. A wide variety of ma-
chine learning methods and models have been submitted, ranging
from methods that use adapted language models [8] and convolu-
tional and deep features [21] to methods that employ transformer
networks [2] and ensembles of various networks [1]. Participants
also starting delving into using electroencephalogram (EEG) data
for inferring memorability, starting from data collected during a

1https://multimediaeval.github.io/
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preliminary EEG study in the 2021 edition [25]. It is obvious that a
large body of work is dedicated to the prediction of media memora-
bility, using a vast diversity of methods, predictors and processing
algorithms. However, to the best of our knowledge, no study has
yet been made with regards to the correlations between the perfor-
mance of these methods and the aspect, features and qualities of
the videos themselves, while also trying to understand what makes
a video hard or easy to predict from a computer vision point of
view. Such a study would, in our opinion, contribute to the under-
standing and explainability of the performances of memorability
prediction systems. On the other hand, by providing a list of visual
samples that may be harder to classify, robustness may be increased,
by providing a list of visual samples that have to be thoroughly
analyzed, or augmented via traditional transformation methods, or
even generative approaches. In this context, our paper proposes
the following contributions over the current state of the art:

• We gather and process a large number of runs submitted by
participants to the 2022 MediaEval Predicting Video Memo-
rability task, and process them in order to understand which
of the videos in the Memorability task are harder to auto-
matically predict;

• We identify and test a large number of video features that
are able to provide an easy to understand overview of what
makes a video harder or easier to classify with regards to
memorability;

• We analyze the correlation between video ground truth data,
based on human annotator assessment, and how well the
participant methods perform on the given testset.

3 METHODOLOGY
Starting from the 33 runs submitted by the participants to the 2022
edition of the Predicting Video Memorability task, included in the
Prediction subtask (subtask 1), we propose the creation of a metric
that could accurately measure how easy it is for the methods and
models represented by the 33 runs to accurately classify the videos
for this task. This section will present the systems we will work
with, some pre-processing considerations, the main principles of
the difficulty metric, and video categorization principles.

3.1 The 2022 Predicting Video Memorability
dataset

The 2022 PMV task and dataset [24] proposes a dataset composed
of 10,000 short three-second videos annotated for short-term mem-
orability and extracted from the Memento10k [19] dataset. It is
divided into a training set composed of 7,000 videos, a validation
set of 1,500 videos, with the remaining 1,500 videos being alloted
to the testing set. Participants must use the training and validation
data in order to design, create and train their systems, and must
submit their prediction runs on the final testing set. In this paper,
we propose using the 33 systems submitted by participants and
analyze their performance in order to better understand what types
of videos are harder to classify with regards to their memorability.

A preliminary pre-processing step involves checking the runs
submitted by participants. Runs with missing samples were ac-
cepted to the competition as valid, as this would affect the final per-
formance of the systems, but it would not create a situation where
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Figure 1: Distribution of the video samples in PVM according
to the Distance metric.

it would be impossible to continue the experiments. However, in
our case missing samples may significantly affect the computation
of the Distance metric (see Section 3.2) and may change a video’s
ranking. For these reasons we had to drop two of the submissions,
ending up with a total of 31 valid runs.

3.2 Distance metric
The MediaEval PVM task used the same official metric for measur-
ing the performance of individual systems throughout all its five
editions, namely the Spearman’s rank correlation metric:

𝜌 = 1 −
6
∑𝑁
𝑖=1 𝑑

2
𝑖

𝑁 (𝑁 2 − 1)
(1)

where 𝑁 is the number of samples in the two collections that
are compared, and 𝑑𝑖 represents the difference between the two
ranks for sample 𝑖 , with 𝑖 ∈ [1, 𝑁 ]. Therefore, for the given data
and metric, the difference from the ground truth data ranks 𝐺 =

{𝑔1, 𝑔2, ..., 𝑔𝑛} is defined by the 𝑑𝑖 distance. Given a set of𝑀 partici-
pant runs, 𝑅 = {𝑅1, 𝑅2, ..., 𝑅𝑀 }, each run having the ranks of its pre-
dictions for the 𝑁 samples in the dataset 𝑅 𝑗 = {𝑝1, 𝑗 , 𝑝2, 𝑗 , ..., 𝑝𝑁,𝑗 },
the distance for a video 𝑖 can be expressed as:

𝐷𝑖 =

𝑀∑︁
𝑗=1

��𝑝𝑖, 𝑗 − 𝑔𝑖
�� (2)

In the final step, we propose normalizing the set of distances
for the 𝑁 videos, obtaining a set of distances �̂� = {𝐷1, 𝐷2, ..., 𝐷𝑁 }
with values 𝐷𝑖 ∈ [0, 1].

3.3 Video categories
The result of the process described in Section 3.2 is presented in
Figure 1. It is obvious that results are skewed towards lower values
of the distance metric �̂� , indicating more easy to predict videos,
with a median value of 0.2391 and an average value of 0.2774. We
create two separate groups of video categories. The first one splits
the videos into equal quartiles, denoted 𝑄1, 𝑄2, 𝑄3, and 𝑄4, where
𝑄1 represents the easiest 25% of videos to predict according to
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Figure 2: Randomly chosen samples fromeach video category,
representing the four quartiles and four thresholds.

the distance 𝐷𝑖 for each video, 𝑄2 the second easiest set of videos,
and so on. These sets are all composed of 375 videos. The next
class divides the videos according to a set of thresholds, creating
splits denoted as 𝑇1, 𝑇2, 𝑇3, and 𝑇4. In this case, the 𝑇1 category
joins videos with 0 ≤ 𝐷𝑖 < 0.25, the 𝑇2 category videos with
0.25 ≤ 𝐷𝑖 < 0.5 and so on. The sizes of these four collections are, in
order: 787, 558, 130, and 25, with the majority of videos going into
the easiest to predict categories, namely 𝑇1 and 𝑇2. Some visual
examples of these splits are presented in Figure 2.

4 PROPOSED ANALYSIS METHODS
Starting with these collections of video categories, we propose
applying a set of feature computation methods that are able to
describe each video in the entire testset, and the video categories
themselves, as averages over the set of videos they are composed
of. We will use three sets of features, namely: (i) a global visual
feature set, computing a variety of visual attributes, (ii) an object-
based feature set, that analyzes attributes related to the presence
of objects in the videos, and (iii) an annotator-based computation,
that analyzes if there are any correlations between the way human
assessors annotated the videos and how well predictors perform.

4.1 Visual features
We implement a number of visual feature computation schemes,
aiming at understanding the visual characteristics that make a
video’s memorability easy (i.e., belonging to 𝑄1 or 𝑇 1) or hard (i.e.,
belonging to 𝑄4 or 𝑇4) to predict by machine learning methods.
Considering the nature of the videos, we take three frames from
each video and apply each feature computation function to each of
these frames. The final value of the function for a video is expressed
as the average over the three frames, while for an entire category
of videos the value is computed as the average over the entirety
of videos. While these features represent a traditional approach
to processing videos, they provide a measurable, understandable,
and explainable quantity for each chosen concept. They are chosen
based on their previous use in many studies that seek to analyze
the visual qualities of a visual sample [3, 7, 15, 18].

We start by computing the sharpness via the Laplacian (𝑓1) oper-
ator [26] and Canny (𝑓2) operator. Following this, we apply a metric
for computing the colorfulness of images (𝑓3), based on the “psy-
chophysical” experiments described in [10], and a contrast feature
(𝑓4) that computes the contrast of images in RGB color space [15].

We then average the pixels of the images transformed to HSL color
space, resulting in a hue (𝑓5), saturation (𝑓6) and brightness (𝑓7).

The final visual feature uses a video-level type of descriptor,
analyzing the dynamism across the entire video (𝑓8). We compute
this by summing up the absolute values of the movement magni-
tude vectors using a dense optical flow function computed via the
Farneback method [6]. This feature uses all the frames in the video.

4.2 Object-based features
We theorize, based on previous experiments on the correlation be-
tween the presence of objects in images and subjective concepts
like interestingness [3], that certain objects may help some predic-
tion methods to perform better, while others, or the lack of objects
may introduce uncertainty, not only in the way algorithms work,
but also in the way human annotators perform for these videos.
We use the architecture presented in [4] for automatically annotat-
ing the videos, an architecture based on the popular Mask R-CNN
approach [11]. Our interest in this case is in exploring the most
common objects present in the video categories. Concretely, this
feature (𝑓9) explores the top-5 most common objects, as well as
the percentage of images from a collection they appear in. Finally,
using the masks of the detected objects, we compute the percentage
of the frame that is covered with detectable objects, thus creating a
second object-based feature (𝑓10).

4.3 Annotator-based feature
Finally wewish to analyze the correlation between the created video
categories and the ground truth memorability values assigned to
the data, according to the results registered by human assessors.
Starting from the four quartiles (𝑄1, 𝑄2, 𝑄3, and 𝑄4) that have
an equal amount of videos assigned to them, we compute and
analyze a set of histograms (𝑓11) that measure the distribution of
each video category given the ground truth memorability of the
videos according to their Spearman’s coefficient.

5 EXPERIMENTAL RESULTS
Given this set of 11 features, we will present and analyze the results
they show for the chosen video categories, either expressing these
results as differences between categories or by analysing the data
generated by each feature. It may be important to remember that,
while the quartile sets of videos have the same number of elements
in their composition, for the threshold categories, especially for𝑇 4,
there may be few samples in the set and this may affect the results.

5.1 Visual features results
The results of the 8 visual features (𝑓1 - 𝑓8) are presented in Table
1, where we present the differences between the categories and a
baseline composed of 𝑄1 or 𝑇 1. It is interesting to note that in the
majority of cases, the differences are all either positive or negative,
indicating a clear tendency. Starting with the color analysis, the
tendency seems to show that videos with higher colorfulness (𝑓3)
and lower color saturation (𝑓6), and those with higher brightness
(𝑓7) seem to be easier to correctly predict. On the other hand, the
results for hue values (𝑓5) seem to be mostly constant, with the
exception of 𝑇4. Also, when analyzing the sharpness features (𝑓1
and 𝑓2) and contrasts (𝑓4) it would seem that the easiest to classify
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Table 1: Percentage change between the harder quartiles (𝑄2
- 𝑄4) and the easiest quartile (𝑄1), and between the harder
threshold intervals (𝑇 2 - 𝑇 4) and the easiest interval (𝑇 1) for
the visual features (𝑓1 - 𝑓8), the top 5 objects overall (with no
objects added for a top 6), and object coverage feature (𝑓10).

Feature Q2 Q3 Q4 T2 T3 T4
𝑓1 30.58% 40.82% 30.12% 20.67% 18.11% 32.48%
𝑓2 16.67% 18.59% 11.36% 5.67% 4.99% 31.25%
𝑓3 -6.54% -4.25% -4.11% -3.62% -1.53% 3.76%
𝑓4 15.54% 17.44% 18.65% 9.35% 3.27% 5.01%
𝑓5 -1.05% -0.21% -0.39% -0.35% 2.42% 10.97%
𝑓6 0.54% 6.51% 2.59% 3.32% 1.55% 5.14%
𝑓7 -6.84% -6.21% -6.43% -3.55% -0.66% -1.14%
𝑓8 -1.67% -10.91% -10.01% -5.51% -18.38% -38.13%

𝑓9 − 𝑝𝑒𝑟𝑠 5.63% 2.63% 1.12% -1.99% -3.55% 9.11%
𝑓9 − 𝑛𝑜𝑛𝑒 27.69% 19.94% 47.97% -3.77% 32.67% -27.1%
𝑓9 − 𝑐ℎ𝑎𝑖𝑟 -4.21% -8.28% -12.5% 5.73% -29.67% -
𝑓9 − 𝑐𝑎𝑟 -21.1% -31.55% -10.65% -7.41% -35.73% -
𝑓9 − 𝑡𝑎𝑏𝑙𝑒 92.24% 199.46% 99.46% 25.36% 45.77% 94.4%
𝑓9 − 𝑏𝑖𝑟𝑑 62.91% 138.02% 62.91% 92.14% 74.64% -

𝑓10 -7.78% -12.08% -10.56% -7.44% -11.09% -12.34%

videos have lower average values, however they also have more
dynamism, as shown by the 𝑓8 feature.

5.2 Object-based results
The following objects are listed in the top 5 most present objects
overall: “person”, “chair”, “car”, “dining table”, and “bird”. We add a
special class for videos with no objects detected, and present the
results in Table 1. Regarding the top-5 most common objects, overall
the person class is present in 72.6% of all the videos, chair in 8.94%,
car in 5.86%, dining table 4.26%, and bird in 3.93%, while 10.66% of
the videos do not have any detected objects in them. One of themost
interesting observations in Table 1 seems to be related to videos
without discernible objects in them (“none”), where there are clear
differences between the four quartiles. There are also significant
differences in the car, table, and bird classes of detections, however,
considering their relative low representation overall in the entire
collection of videos, this may not represent a significant change
in video content. Another constant result is represented by the 𝑓10
feature, which measures the coverage of detectable objects in a
video. Overall, both 𝑄1 and 𝑇1 have more object coverage, while
objects in the categories representing harder prediction samples
have lower object coverage. The object coverage for the 𝑄1 and 𝑇 1
categories are 38.15% and 36.69%, while object coverage for 𝑄4 and
𝑇 4 are 34.12% and 32.16% respectively.

5.3 Annotator-based results
The results of the final experiment are presented in Figure 3. The
histogram is grouped in memorability score intervals of 0.02. We
only consider the quartile categories in this case, as these are the
categories with equal number of samples in them, and therefore
make this comparison fair towards all the categories. Visually, two
observations stand out in this analysis: (i) the first one, containing
samples that have average performance with regards to memorabil-
ity ground truth scores are mostly dominated by samples belonging
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Figure 3: Distribution of the video samples in the four
quatiles, according to their memorability score as annotated
by human assessors, grouped in score intervals of 0.02.

to the 𝑄2 or 𝑄3 categories, (ii) the samples that have either high or
low memorability scores tend to belong to the 𝑄1 or 𝑄2 categories.
Furthermore, most of the hardest to predict movies belong to the
first category, being placed between memorability values of 0.7 –
0.9.

6 CONCLUSIONS
This paper presents an analysis of typical video features and at-
tributes, and their correlation with how easy or hard it is to classify
video samples according to their memorability scores. We gathered
runs submitted by participants during the 2022 MediaEval Pre-
dicting Video Memorability task, and created categories of videos
according to how well the runs performed for each video in the
testset. Feature analysis shows that videos that are hard or at least
harder to classify have the following characteristics: (i) they have
higher contrast and sharpness, but lower dynamism; (ii) they have
lower brightness and colorfulness, and a higher saturation; (iii) they
have fewer significant objects in them and the coverage of these
objects is smaller; and (iv) they tend to have a mid-level memora-
bility score. We believe that this analysis may be useful for future
research, as movies in a dataset that have these particularities may
be somehow augmented at training time in an attempt to improve
classifier performance for hard to classify samples in particular,
thus positively impacting overall performance.
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