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Abstract

Estimating the pose of a human in 3D given an image or a video has recently received significant attention from the
scientific community. The main reasons for this trend are the ever increasing new range of applications (e.g., human-
robot interaction, gaming, sports performance analysis) which are driven by current technological advances. Although
recent approaches have dealt with several challenges and have reported remarkable results, 3D pose estimation remains
a largely unsolved problem because real-life applications impose several challenges which are not fully addressed by
existing methods. For example, estimating the 3D pose of multiple people in an outdoor environment remains a
largely unsolved problem. In this paper, we review the recent advances in 3D human pose estimation from RGB
images or image sequences. We propose a taxonomy of the approaches based on the input (e.g., single image or
video, monocular or multi-view) and in each case we categorize the methods according to their key characteristics. To
provide an overview of the current capabilities, we conducted an extensive experimental evaluation of state-of-the-art
approaches in a synthetic dataset created specifically for this task, which along with its ground truth is made publicly
available for research purposes. Finally, we provide an in-depth discussion of the insights obtained from reviewing
the literature and the results of our experiments. Future directions and challenges are identified.
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1. Introduction

Articulated pose and motion estimation is the task
that employs computer vision techniques to estimate
the configuration of the human body in a given image
or a sequence of images. This is an important task in
computer vision, being used in a broad range of sci-
entific and consumer domains, a sample of which are:
(i) Human-Computer Interaction (HCI): Human motion
can provide natural computer interfaces whereby com-
puters can be controlled by human gestures or can rec-
ognize sign languages [1, 2]; (ii) Human-Robot Inter-
action: Today’s robots must operate closely with hu-
mans. In household environments, and especially in as-
sisted living situations, a domestic service robot should
be able to perceive the human body pose to interact
more effectively [3, 4]; (iii) Video Surveillance: In
video-based smart surveillance systems, human motion
can convey the action of a human subject in a scene.
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Since manual monitoring of all the data acquired is im-
possible, a system can assist security personnel to fo-
cus their attention on the events of interest [5, 6]; (iv)
Gaming: The release of the Microsoft Kinect sensor
[7, 8] along with toolkit extensions that facilitate the in-
tegration of full-body control with games and Virtual
Reality applications [9] are the most illustrative exam-
ples of how human motion capture can be used in the
gaming industry; (v) Sport Performance Analysis: In
most sports, the movements of the athletes are stud-
ied in great depth from multiple views and, as a result,
accurate pose estimation systems can help in analyz-
ing these actions [10, 11, 12]; (vi) Scene Understand-
ing: Estimating the 3D human pose can be used in a
human-centric scene understanding setup to help in the
prediction of the “workspace” of a human in an indoor
scene [13, 14]; (vii) Proxemics Recognition: Proxemics
recognition refers to the task of understanding how peo-
ple interact. It can be combined with robust pose es-
timation techniques to directly decide whether and to
what extent there is an interaction between people in an
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Figure 1: A summary of real-life applications of human motion analysis and pose estimation (images from left to right and top
to bottom): Human-Computer Interaction, Video Surveillance, Gaming, Physiotherapy, Movies, Dancing, Proxemics, Sports,
Human-Robot Interaction. Flickr image credits: The Conmunity - Pop Culture Geek, Intel Free Press, Patrick Oscar Boykin, Rae
Allen, Christopher Prentiss Michel, Yuiseki Aoba, DIUS Corporate, Dalbra J.P., and Grook Da Oger.

image [15] and at the same time improves the pose esti-
mation accuracy since it addresses occlusions between
body parts; (viii) Estimating the anthropometry of a hu-
man from a single image [16, 17, 18]; (ix) 3D Avatar
creation [19, 20] or controlling a 3D Avatar in games
[21]; (x) Understanding the camera wearer’s activity in
an egocentric vision scenario [22]; and (xi) Describing
clothes in images [23, 24] which can then be used to
improve the pose identification accuracy.

In Figure 1 some of the aforementioned applications
are depicted, which along with recent technological ad-
vances, and the release of new datasets have resulted in
an increasing attention of the scientific community on
the field. However, human pose estimation still remains

an open problem with several challenges, especially in
the 3D space.

Figure 2 shows the number of publications with the
keywords: (i) “3D human pose estimation”, (ii) “3D
motion tracking”, (iii) “3D pose recovery”, and (iv) “3D
pose tracking” in their title after duplicate and not rel-
evant results are discarded. Note that, there are other
keywords that return relevant publications such as “3D
human pose recovery” [5] or “3D human motion track-
ing” [25]. Thus, Figure 2 does not cover all the methods
we discuss but, even restricted to this particular search,
still shows the increase of interest by the scientific com-
munity.

To cover the recent advances in the field and at the
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Figure 2: Depiction of the number of papers published during
the last decade that include the keywords “3D human pose
estimation”, “3D motion tracking”, “3D pose recovery”, and
“3D pose tracking” in their title after duplicate and irrelevant
results are discarded.1

same time to be effective in our approach, we narrowed
this survey to a class of techniques which are currently
the most popular, namely the 3D human body pose esti-
mation from RGB images. Apart from using RGB data,
another major class of methods, which have received a
lot of attention lately, are the ones using depth infor-
mation such as RGB-D. Although an increasing num-
ber of papers has been published on this topic during
the last few years with remarkable results [7], 3D Pose
Estimation from RGB-D images will not be covered in
this work because Helten et al. [26] and Ye et al. [27]
published surveys on this topic recently which cover in
detail the recent advances and trends in the field.

1.1. Previous Surveys and Other Resources

The reader is encouraged to refer to the early works
of Aggarwal and Cai [28] and Gavrila [29] to obtain an
overview of the initial methods in the field. The most
recent surveys on human pose estimation by Moeslund
et al. [30] and Poppe [31], date back to 2006 and 2007,
respectively, and since they cover in great breadth and
depth the whole vision-based human motion capture do-
main, they are highly recommended. However, they do
not focus specifically on the 3D human pose estimation
and are now outdated. Other existing reviews, focus on
more specific tasks. For instance, a review on view-
invariant pose representation and estimation is offered
by Ji and Liu [32]. In the work of Sminchisescu [33],
an overview of the problem of reconstructing 3D human
motion from monocular image sequences is provided,

1Results of the search on May 1st , 2016. We excluded searches re-
lated to patents or articles which other scholarly articles have referred
to, but which cannot be found online.

whereas Holte et al. [34] present a 3D human pose esti-
mation review, which covers only model-based methods
in multi-view settings.

The primary goal of our review is to summarize the
recent advances of the 3D pose estimation task. We con-
ducted a systematic research of single-view approaches
published in the 2008-2015 time frame. For multi-view
scenarios, we focused on methods either published af-
ter the work of Holte et al. [34] or published before, but
not discussed in their work. The selected time frames
ensure that all approaches discussed in this survey are
not referenced in previous reviews. However, for an
incipient overview of this field, the reader is encour-
aged to refer to the publications of Sigal et al. [35, 36]
where, inspired by the introduction of the HumanEva
dataset, they present some aspects of the image- and
video-based human pose and motion estimation tasks.
In the recent work of Sigal [37], the interested reader
can find a well-structured overview of the articulated
pose estimation problem. Finally, Moeslund et al. [38]
offer an illustrative introduction to the problem and pro-
vide a detailed analysis and overview of different human
pose estimation approaches.

1.2. Taxonomy and Scope of this Survey
Figure 3 presents the pool of steps which apply to

most 3D human pose estimation systems and illustrates
all the stages covered in this review. Three-dimensional
pose estimation methods include some of the action
steps shown which are: (i) the use of a priori body
model which determines if the approach will be model-
based or model-free, (ii) the utilization of 2D pose in-
formation which can be used not only as an additional
source of information but also as a way to measure the
accuracy by projecting the estimated 3D pose to the
2D image and comparing the error, (iii) the use of pre-
processing techniques, such as background subtraction,
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Figure 3: Pool of the stages of a common 3D human pose esti-
mation system. Given an input signal the 3D pose is estimated
by employing some or even all of the depicted steps.
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(iv) feature extraction/selection approaches that obtain
key features from the human subject which are fed to
the estimation algorithms, (v) the process of obtaining
an initial 3D pose which is used thereafter by optimiza-
tion techniques that are employed to estimate the 3D
pose and (vi) the pose estimation approach proposed
each time that often is discussed along with constraints
that are enforced to discard anthropometrically unreal-
istic poses, and finally how the final pose is inferred. A
more specific categorization of the approaches wouldn’t
be practical since different approaches follow different
paths according to the problem they are trying to ad-
dress.

Despite the increasing interest from the scientific
community, a well-structured taxonomy for the 3D hu-
man pose estimation task has not been proposed. To
group approaches with similar key characteristics, we
categorized the problem based on the input signal. We
investigate articulated 3D pose and motion estimation
when the input is a single image or a sequence of RGB
frames. In the latter case approaches focus on capturing
how the 3D human pose changes over time from an im-
age sequence. A noteworthy amount of publications ad-
dress the articulated 3D human pose estimation problem
in multi-view scenarios. Since these approaches over-
come some difficulties, while at the same time introduc-
ing new challenges to the pose estimation task, they are
discussed separately in each case.

Similar to the aforementioned surveys and resources,
we approach the pose estimation methods focusing on
how they interpret the structure of the body: generative
(model-based), discriminative (model-free), part-based
which is a subcategory of generative models, and finally
hybrid approaches. The taxonomy of 3D Pose Estima-
tion methods is depicted in Figure 4.

Generative model approaches (also referred to as
model-based or top-down approaches) employ a known
model based on a priori information such as specific
motion [39] and context [40]. The pose recovery pro-
cess comprises two distinct parts, the modeling and the
estimation [41]. In the first stage, a likelihood function
is constructed by considering all the aspects of the prob-
lem such as the image descriptors, the structure of the
human body model, the camera model and also the con-
straints being introduced. For the estimation part, the
most likely hidden poses are predicted based on image
observations and the likelihood function.

Another category of generative approaches found in
the literature is part-based (also referred to as bottom-
up approaches), which follows a different path by repre-
senting the human skeleton as a collection of body parts
connected by constraints imposed by the joints within

the skeleton structure. The Pictorial Structure Model
(PSM) is the most illustrative example of part-based
models. It has been mainly used for 2D human pose
estimation [42, 43, 44] and has lately been extended for
3D pose estimation [45, 46]. It represents the human
body as a collection of parts arranged in a deformable
configuration. It is a powerful body model which re-
sults in an efficient inference of the respective parts.
An extension of the PSM is the Deformable Structures
model proposed by Zuffi et al. [47], which replaces the
rigid part templates with deformable parts to capture
body shape deformations and to model the boundaries
of the parts more accurately. A graphical model which
captures and fits a wide range of human body shapes
in different poses is proposed by Zuffi and Black [48].
It is called Stitched Puppet (SP) and is a realistic part-
based model in which each body part is represented by a
mean shape. Two subspaces of shape deformations are
learned using principal component analysis (PCA), in-
dependently accounting for variations in intrinsic body
shape and pose-dependent shape deformations.

Discriminative approaches (also referred to as
model-free) do not assume a particular model since they
learn a mapping between image or depth observations
and 3D human body poses. They can be further classi-
fied into learning-based and example-based approaches.
Learning-based approaches learn a mapping function
from image observations to the pose space, which must
generalize well for a new image from the testing set
[49, 50]. In example-based approaches, a set of exem-
plars with their corresponding pose descriptors is stored
and the final pose is estimated by interpolating the can-
didates obtained from a similarity search [49, 51]. Such
methods benefit in robustness and speed from the fact
that the set of feasible human body poses is smaller
than the set of anatomically possible ones [52]. The
main advantage of generative methods is their ability to
infer poses with better precision since they generalize
well and can handle complex human body configura-
tions with clothing and accessories. Discriminative ap-
proaches have the advantage in execution time because
the employed models have fewer dimensions. Accord-
ing to Sigal and Black [35], the performance of discrim-
inative methods depends less on the feature set or the in-
ference method than it does for generative approaches.

Additionally, there are hybrid approaches, in which
discriminative and generative approaches are combined
to predict the pose more accurately. To combine these
two methods, the observation likelihood obtained from
a generative model is used to verify the pose hypothe-
ses obtained from the discriminative mapping func-
tions for pose estimation [53, 54]. For example, Salz-
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Figure 4: Taxonomy of 3D Pose Estimation methods. Given an image or a video in a monocular or multi-view setup, methods
can be classified as generative (a subcategory of which are part-based approaches), discriminative (which can be classified into
learning-based and example-based) and finally hybrid which are a combination of the previous two.

mann and Urtasun [55] introduced a unified framework
that combines model-free and model-based approaches
by introducing distance constraints into the discrimina-
tive methods and employing generative methods to en-
force constraints between the output dimensions. An
interesting discussion on generative and discriminative
approaches can be found in the work of Bishop and
Lasserre [56].

In the following, we present a detailed analysis of
3D pose estimation techniques in different setups. The
rest of the paper is organized as follows. In Section 2,
we discuss the main aspects of the body model em-
ployed by model-based methods and the most com-
mon features and descriptors used. In Section 3, we
present the proposed taxonomy by discussing the key
aspects of pose estimation approaches from a single im-
age. Section 4 presents the recent advances and trends
in 3D human pose estimation from a sequence of im-
ages. In both sections, we discuss separately single- and
multi-view input approaches. In Section 5, we discuss
some of the available datasets, summarize the evalua-
tion measures found in the literature, and offer a sum-
mary of performance of several methods on the Hu-
manEva dataset. Section 6 introduces a new synthetic
dataset in which humans with different anthropometric
measurements perform actions. An evaluation of the
performance of state-of-the-art 3D pose estimation ap-
proaches is also provided. We conclude this survey in
Section 7 with a discussion of promising directions for
future research.

2. Human Body Model and Feature Representation

The human body is a very complex system composed
of many limbs and joints and a realistic estimation of
the position of the joints in 3D is a challenging task
even for humans. Marinoiu et al. [57] investigated how
humans perceive the pictorial 3D pose space, and how
this perception can be connected with the regular 3D
space we move in. Towards this direction, they created a
dataset which, in addition to 2D and 3D poses, contains
synchronized eye movement recordings of human sub-
jects shown a variety of human body configurations and
measured how accurately humans re-create 3D poses.
They found that people are not significantly better at re-
enacting 3D poses in laboratory environments given vi-
sual stimuli, on average, than existing computer vision
algorithms.

Despite these challenges, automated techniques pro-
vide valuable alternatives for solving this task. Model-
based approaches employ a human body model which
introduces prior information to overcome this difficulty.
The most common 3D human body models in the lit-
erature are the skeleton (or stick figure), a common
representation of which is shown in Figure 5 along
with its structure, and shape models. They both de-
fine kinematic properties, whereas the shape models
also define appearance characteristics. The cylindrical
and the truncated cone body models are illustrative ex-
amples of shape models. After constructing the body
model, constraints are usually enforced to constrain the
pose parameters. Kinematic constraints, for example,
ensure that limb lengths, limb-length proportions, and
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Figure 5: Left: Human skeleton body model with 15 joints. Right: Tree-structured representation with the pelvis as the root node
(Sh. - Shoulder, Elb. - Elbow and Ank. - Ankle).

joint angles follow certain rules. Other popular con-
straints found in the literature are occlusion constraints
that allow more realistic poses in which some body
parts (legs or arms) are occluded by others and prevent
double-counting phenomena, appearance constraints in-
troduced by the symmetry of left and right body part
appearances [58], and smoothness constraints in the an-
gle of the joints which are used to avoid abrupt changes
between sequential video frames.

Whether a body model is employed or not (model-
based or model-free approaches), the next action step
in the study of 3D human motion, is the accurate fea-
ture extraction from the input signal. Early approaches
in the field used low-level features such as edges, color,
optical flow or silhouettes which are obtained after per-
forming background subtraction. Silhouettes are invari-
ant to texture and lighting but require good segmenta-
tion of the subject, and can easily lose specific details
of human parts. Image descriptors are then employed to
describe these features and to reduce the size of the fea-
ture space. Common feature representations employed
in the literature include the use of Scale Invariant Fea-
ture Transforms (SIFT) [59], Shape Context (SC) [60]
and Appearance and Position Context (APC) descrip-
tors [40]. APC is a sparse and local image descriptor,
which captures the spatial co-occurrence and context
information of the local structure as well as their rela-
tive spatial positions. Histograms of Oriented Gradients
(HoG) have been used a lot lately [61, 62], because they
perform well when dealing with clutter and can capture
the most discriminative information from the image. In-
stead of extracting features from the image, some ap-
proaches [5, 49] select the most discriminative features.
Moll et al. [63] proposed posebits which are semantic
pose descriptors which represent geometrical relation-
ships between body parts and can take binary values

depending on the answer to simple questions such as
“Left foot in front of the torso”. Posebits can provide
sufficient 3D pose information without requiring 3D an-
notation, which is a difficult task, and can resolve depth
ambiguities.

3. Recovering 3D human pose from a single image

The reconstruction of an arbitrary configuration of
3D points from a single monocular RGB image has
three characteristics that affect its performance: (i) it is
a severely ill-posed problem because similar image pro-
jections can be derived from different 3D poses; (ii) it
is an ill-conditioned problem since minor errors in the
locations of the 2D body joints can have large conse-
quences in the 3D space; and (iii) it suffers from high
dimensionality [64]. Existing approaches propose dif-
ferent solutions to compensate for these constraints and
are discussed in Section 3.1.

3.1. Three-dimensional Human Pose Estimation from a
Single Monocular Image

The recovery of 3D human poses in monocular im-
ages is a difficult task in computer vision since highly
nonlinear human motions, pose and appearance vari-
ance, cluttered backgrounds, occlusions (both from
other people or objects and self-occlusions), and the am-
biguity between 2D and 3D poses are common phenom-
ena. The papers described in this category estimate the
human pose explicitly from a single monocular image
and are summarized in Table 1. Publications that fit into
both the single image and the video categories are dis-
cussed in Section 4.

Deep-Learning Methods: Deep-learning methods are
representation-learning approaches [83] composed of
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Table 1: 3D human pose estimation from a single monocular RGB image. Wherever a second reference is provided, it denotes the
availability of source code for the method. The Body Model column indicates whether a body model is employed. The Method
Highlights column reflects the most important steps in each approach.

Year First Author Body
Model

Method Highlights Evaluation
Datasets

Evaluation
Metrics

2016 Yasin [65, 66] Yes Training: 3D poses are projected to 2D and a regression
model is learned from the 2D annotations; Testing: 2D pose
is estimated, the nearest 3D poses are predicted; final 3D
pose is obtained by minimizing the projection error

HumanEva-I,
Human3.6M

3D pose

2015 Li [67] No The input is an image and a potential 3D pose and the output
a score matching value; ConvNet for image feature extrac-
tion; Two sub-networks for transforming features and pose
into a joint embedding

Human3.6M MPJPE

2014 Kostrikov
[68]

Yes Predict the relative 3D joint position using depth sweep re-
gression forests trained with three groups of features; 3DPS
model for inference

Human3.6M,
HumanEva-I

3D
3D pose

2014 Li [69] No Train a deep ConvNet; and joint point regression to estimate
the positions of joint points relative to the root position and
joint point detection to classify whether one local window
contains the specific joint

Human3.6M MPJPE

2014 Wang [70, 71] Yes 2D part detector and a sparse basis representation in an
overcomplete dictionary; Anthropometric constraints are
enforced and an L1-norm projection error metric is used;
Optimization with ADMM

HumanEva-I,
CMU MoCap,
UVA 3D

3D pose

2014 Zhou [72, 73] Yes Convex formulation by using the convex relaxation of the
orthogonality constraint; ADMM for optimization

CMU MoCap 3D

2013 Radwan [74] Yes Employ a 2D part detector with an occlusion detection step;
Create multiple views synthetically with a twin-GPR in a
cascaded manner; Kinematic and orientation constraints to
resolve remaining ambiguities

HumanEva-I,
CMU MoCap

3D pose

2013 Simo-Serra
[75]

Yes Bayesian approach using a model with discriminative 2D
part detectors and a probabilistic generative model based
on latent variables; Inference using the CMA-ES

HumanEva-I,
TUD Stadmitte

3D
3D pose

2012 Brauer [76] Yes ISM to obtain vote distributions for the 2D joints; Example-
based 3D prior modeling and comparison of their projec-
tions with the respective joint votes

UMPM MJAE,
Orientation
Angle

2012 Ramakrishna
[77, 78]

Yes Enforce anthropometric constraints and estimate the param-
eters of sparse linear representation in an overcomplete dic-
tionary with a matching pursuit algorithm

CMU MoCap 3D

2012 Simo-Serra
[79]

Yes 2D part detector and a stochastic sampling to explore each
part region; Set of hypotheses enforces reprojection and
length constraints; OCSVM to find the best sample

HumanEva-I,
TUD Stadmitte

3D
3D pose

2011 Greif [80] No Train an action-specific classifier on improved HoG fea-
tures; use a people detector algorithm and treat 3D pose
estimation as a classification problem

HumanEva-I 3D

2009 Guo [81] No Pose tree is learned by hierarchical clustering; Multi-class
classifiers are learned and the relevance vector machine re-
gressors at each leaf node estimate the final 3D pose

HumanEva-I 3D

2009 Huang
[49, 82]

No Occluded test images as a sparse linear combination of
training images; Pose-dependent (HoG) feature selection
and L1-norm minimization to find the sparest solution

HumanEva-I,
Synthetic

3D, MJAE

2008 Ning [40] No Employ an APC descriptor and learn in a jointly supervised
manner the visual words and the pose estimators

HumanEva-I,
Quasi-synthetic

3D, MJAE
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multiple non-linear transformations. Feature hierar-
chies are learned with features from higher and more
abstract levels of the hierarchy formed by the compo-
sition of lower level features [84, 85]. Depending on
the method used and how the architecture is set-up, it
finds applications in both unsupervised and supervised
learning as well as hybrid approaches [86]. After its
early introduction by Hinton et al. [87, 88], employing
deep architectures, is found to yield significantly bet-
ter results in many computer vision tasks such as ob-
ject recognition, image classification and face verifica-
tion [89, 90, 91]. Following that, approaches which em-
ploy deep-learning techniques to address the 2D pose
estimation task with great success, have been proposed
[92, 93, 94, 95] and only recently the 3D pose estima-
tion task was approached using deep learning. In the
work of Li and Chan [69], deep convolutional networks
(ConvNets) are trained for two distinct approaches: (i)
they jointly train the pose regression task with a set of
detection tasks in a heterogeneous multi-task learning
framework and (ii) pre-train the network using the de-
tection tasks, and then refine the network using the pose
regression task alone. They show that the network in
its last layers has an internal representation for the po-
sitions of the left (or right) side of the person, and thus,
has learned the structure of the skeleton and the corre-
lation between output variables. Li et al. [67] proposed
a framework which takes as an input an image and a 3D
pose and produces a score value that represents a multi-
view similarity between the two inputs (i.e., whether
they depict the same pose). A ConvNet for feature ex-
traction is employed and two sub-networks are used to
perform a non-linear transformation of the image and
pose into a joint embedding. A maximum-margin cost
function is used during training which enforces a re-
scaling margin between the score values of the ground
truth image-pose pair and the rest image-pose pairs.
The score function is the dot-product between the two
embeddings. However, the lack of training data for
ConvNet-based techniques remains a significant chal-
lenge. Towards this direction, the methods of Chen et
al. [96] and Rogez and Schmid [97] propose techniques
to synthesize training images with ground truth pose an-
notations. Finally, the task of estimating the 3D human
pose from image sequences has also been explored us-
ing deep learning, [98, 99, 100, 101, 102, 103] and the
respective methods are going to be discussed individu-
ally in Sections 4.1 and 4.2.

Two-dimensional detectors for 3D pose estimation: To
overcome the difficulty and the cost of acquiring im-
ages of humans along with their respective 3D poses,

Yasin et al. [65] proposed a dual-source approach which
employs images with their annotated 2D poses and 3D
motion capture data to estimate the pose of a new test
image in 3D. During training, 3D poses are projected to
a 2D space and the projection is estimated from the an-
notated 2D pose of the image data through a regression
model. At testing time, the 2D pose of the new image
is first estimated from which the most likely 3D poses
are retrieved. By minimizing the projection error the fi-
nal 3D pose is obtained. Aiming to perform 3D human
pose estimation from noisy observations, Simo-Serra et
al. [79] proposed a stochastic sampling method. As a
first step, they employ a state-of-the-art 2D body part
detector [61] and then convert the bounding boxes of
the parts to a Gaussian distribution by computing the co-
variance matrix of the classification scores within each
bounding box. To obtain a set of ambiguous candidate
poses from the samples generated in the 3D space by
the Gaussian distribution, they use the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) to simul-
taneously minimize re-projection and length errors. The
most anthropometric pose between the candidates is de-
termined by using a One-Class Support Vector Machine
(OCSVM). To exploit the advantages of both generative
and discriminative approaches, Simo-Serra et al. [75]
proposed a hybrid Bayesian approach. Their method
comprises 2D HoG-based discriminative part detectors
which constrain the 2D location of the body parts and a
probabilistic generative latent variable model which (i)
maps points from the high dimensional 3D space to the
lower dimensional latent space, (ii) specifies the depen-
dencies between the latent states, (iii) enforces anthro-
pometric constraints, and (iv) prevents double counting.
To infer the final 3D pose they use a variation of CMA-
ES. Brauer et al. [76] employ a slightly modified Im-
plicit Shape Model (ISM) to generate vote distributions
for potential 2D joint locations. Using a Bayesian for-
mulation, 3D and 2D poses are estimated by modeling
(i) the pose prior following an example-based approach
and (ii) the likelihood by comparing the projected joint
locations of the exemplar poses with the corresponding
nearby votes.

Discussion of Norms and Camera Parameter Estima-
tion: To resolve the ambiguities that arise when per-
forming pose estimation from a single image, some
methods also estimate the relative pose of the camera.
The approaches of Ramakrishna et al. [77] and Wang
et al. [70] belong to this category. Both methods re-
quire the locations of the joints in the 2D space as an
input, use a sparse basis model representation, and em-
ploy an optimization scheme which alternatively esti-
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mates the 3D pose estimation and the camera parame-
ters. In the first case, the authors constrain the sum of
the limb lengths and use a matching pursuit algorithm to
perform reconstruction. Their method can also recover
the 3D pose of multiple people in the same view. In the
latter case, L1-norm is used as a reprojection error met-
ric that is more robust when the joint locations in 2D are
inaccurate. This approach also enforces not only limb
length constraints, which eliminate implausible poses,
but also L1-norm constraints on the basis coefficients. A
discussion on why L2-norms are insufficient for estimat-
ing 3D pose similarity is provided by Chen et al. [104].
However, Zhou et al. [72] argue that the solution to such
alternating minimization approaches is sensitive to ini-
tialization. Using the 2D image landmarks as an input,
they used an augmented shape-space model to give a
linear representation of both intrinsic shape deforma-
tion and extrinsic viewpoint changes. They proposed
a convex formulation that guarantees global optimality
and solved the optimization problem with a novel al-
gorithm based on the Alternating Direction Method of
Multipliers (ADMM) and the proximal operator of the
spectral norm. Their method is applicable not only to
human pose but also to car and face reconstruction. An
approach which also uses a sparse image representation
and solves a convex optimization problem with the L1-
norm is proposed by Huang and Yang [49]. Aiming to
estimate 3D human pose when humans are occluded,
they proposed a method which exploits the advantages
of both example-based and learning-based approaches
and represents each test sample as a sparse linear com-
bination of training samples. The background clutter in
the test sample is replaced with backgrounds from the
training images which results in pose-dependent fea-
ture selection. They use a Gaussian process regressor
to learn the mapping between the image features (HoG
from original or corrupted images and recovered fea-
tures) and the corresponding 3D parameters. They ob-
served that when a sparse linear representation of the
training images is used for the probes, the set of coef-
ficients from the corrupted (i.e., occluded) test image is
recovered with minimum error via solving an L1-norm
minimization problem.

Discriminative Approaches: Ning et al. [40] proposed
a discriminative bag of words approach. As a first step,
they utilize an APC descriptor, and learn in a supervised
manner a separate metric for each visual word from the
labeled image-to-pose pairs. They use a Bayesian Mix-
ture of Experts (BME) model to represent the multi-
modal distribution of the 3D human pose conditioned
on the feature space and also a gradient ascent algo-

rithm which jointly optimizes the metric learning and
the BME model. Kostrikov and Gall [68] approached
the pose estimation task from a different perspective,
and proposed a discriminative depth sweep forest re-
gression approach. After extracting features from 2D
patches sampled from different depths, the proposed
method sweeps with a plane through the 3D volume of
potential joint locations and uses a regression forest that
learns 2D-2D or 3D-3D mappings from the relative fea-
ture locations. Thus, they predict the relative 3D po-
sition of a joint, given the hypothesized depth of the
feature. Finally, the pose space is constrained by em-
ploying a 3D pictorial structure model used to infer the
final pose. Okada and Soatto [105] introduced a method
comprising three main parts that estimates the 3D pose
in clutter backgrounds. Given a test image with a win-
dow circumscribing a specific subject, (i) they extract a
HoG-based feature vector of the window; (ii) they use
a Support Vector Machine (SVM) classifier that selects
the pose cluster which the current pose belongs to; and
(iii) having taken into consideration that the relevance
of features selected depends on the pose, they recover
the 3D pose using a piecewise linear regressor of the
selected cluster.

Both Guo and Patras [81] and Jiang [106] proposed
exemplar-based approaches. In the first approach a tree
is learned by hierarchical clustering on pose manifold
via affinity propagation and the final 3D pose is esti-
mated by applying the learned relevance vector machine
regressor that is attached to the leaf node to which the
example is classified. In the second method, the 3D pose
is reconstructed by using a k-dimensional tree (kd-tree)
to search in a database containing millions of exem-
plars of optimal poses for the optimal upper body and
lower body pose. Another interesting approach is pro-
posed by Urtasun and Darrell [107]. They developed
an online activity-independent method to learn a com-
plex appearance-to-pose mapping in large training sets
using probabilistic regression. They use a (consistent
in pose space) sparse Gaussian process model which:
(i) forms local models (experts) for each test point, (ii)
handles the mapping inaccuracy caused by multimodal
outputs, and (iii) performs fast inference. The local re-
gressors at each test point overcome the boundary prob-
lems that occur in offline (clustering) approaches. Fi-
nally, Greif et al. [80] treat pose estimation as a classi-
fication problem. They consider the full body pose as a
combination of a 3D pose, and a viewpoint, and define
classes that are then learned by an action specific for-
est classifier. The input of the classification process are
lower-dimensional improved HoG [108] features. The
proposed method does not require labeled viewpoints
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and background subtracted images, and the action per-
formed by the subject does not need to be cyclic.

The approach of Radwan et al. [74] differentiates it-
self from the rest since it performs pose estimation from
a single image by utilizing information from multiple
synthetically created views. First, they employ the 2D
part detector of Yang and Ramanan [61] to which they
add an extra occlusion detection step to overcome self-
occlusions. Then, they use the twin Gaussian Process
Regression (GPR) in a cascaded manner to generate
synthetic views from different viewpoints, and finally
impose kinematic and orientation constraints on the 3D
ambiguous pose resulting from the projection of a 3D
model onto the initial pose.

3.2. Three-dimensional Human Pose Estimation from a
Single image in a Multiple Camera View Scenario

Resolving the ambiguities that arise in the 3D space
would be a much easier task if depth information ob-
tained from a sensor such as the Microsoft Kinect [7]
was used. However, Kinect has a specific range within
which it operates successfully and it cannot be used for
outdoor applications. Two approaches that use multi-
ple view images to overcome these difficulties and to
construct a more realistically applicable pose estimation
system are presented in Table 2 and described below.

Burenius et al. [45] implemented a framework for 3D
pictorial structures for multi-view articulated pose es-
timation. First, they compute the probability distribu-
tion for the position of body parts with 2D part detectors
based on HoG features. The parts are connected in a tree
graph and the dependency structure of the variables of
the model is represented through a Bayesian network. A
weak pose prior (translation and rotation) is imposed to
the pose and dynamic programming is used to discretize
the state space. For the translation prior, they use a
max-product algorithm with two variations according to
the constraints imposed. A two-step algorithm is finally
employed to deal with the double counting phenomenon
which is a typical problem in tree structures. An ap-
proach which employs a 2D pictorial structure model in
multi-view scenarios is proposed by Amin et al. [60].
Instead of using a 3D body model, they infer the 3D
pose over a set of 2D projections of the 3D pose in each
camera view. The 2D pictorial structures model is ex-
tended with flexible parts, color features, multi-modal
pairwise terms, and mixtures of pictorial structures. Ap-
pearance and spatial correspondence constraints across
views are enforced to take advantage of the multi-view
setting. The final 3D pose is recovered from the 2D pro-
jection by triangulation.

4. Recovering 3D Human Pose from a Sequence of
Images

Besides high dimensionality, which is always an is-
sue, a difficulty that arises when trying to locate the 3D
position of the body joints from a sequence of images
is that the shape and appearance of the human body
may change drastically over time due to: (i) background
changes or camera movement, especially outside of
controlled laboratory settings; (ii) illumination changes;
(iii) rotations in-depth of limbs; and (iv) loosely fitting
clothing.

4.1. Three-dimensional Human Pose Estimation from a
Sequence of Monocular Images

Most of the video data used nowadays are captured
from a single camera view. Even in multi-view scenar-
ios (e.g., surveillance systems) the person is not always
visible from all the cameras at the same time. As a re-
sult, estimating the 3D pose of a human from monoc-
ular images is an important task. According to Sigal
[37], accurate pose estimation on a per frame basis is an
ill-posed problem and methods that exploit all available
information over time [109, 110] can improve perfor-
mance. The papers in this category focus on estimating
the 3D human pose from a sequence of single-view im-
ages and are presented in Table 3.

Discriminative approaches: In the work of Tekin et
al. [103] spatiotemporal information is exploited to re-
duce depth ambiguities. They employ 2 ConvNets to
first align (i.e., shifting to compensate for the motion)
the bounding boxes of the human in consecutive frames
and then refine them so as to to create a data volume.
3D HoG descriptors are computed and the 3D pose is re-
constructed directly from the volume with Kernel Ridge
Regression (KRR) and Kernel Dependency Estimation
(KDE). They demonstrated that (i) when information
from multiple frames is exploited, challenging ambigu-
ous poses where self-occlusion occurs can be estimated
more accurately and (ii) the linking of detections in in-
dividual frames in an early stage, followed by enforcing
temporal consistency at a later stage improves the per-
formance significantly. ConvNets were also employed
in a deep learning regression architecture work of Tekin
et al. [102]. To encode dependencies between joint lo-
cations, an auto-encoder is trained on existing human
poses to learn a structured latent representation of the
human pose in 3D. Following that, a ConvNet architec-
ture maps through a regression framework the input im-
age to the latent representation and the decoding layer
is then used to estimate the 3D pose from the latent to
the original 3D space.
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Table 2: 3D human pose estimation from a single RGB image in a multi-view setup. The Body Model column indicates whether a
body model is employed. The Method Highlights column reflects the most important steps in each approach.

Year First Author Body
Model

Method Highlights Evaluation
Datasets

Evaluation
Metrics

2013 Amin [60] Yes Infer 3D pose over a set of 2D projections of the 3D pose
in each camera view; Enforce appearance and spatial cor-
respondence constraints across views; Recover final pose
by triangulation

HumanEva-I,
MPII Cooking

3D

2013 Burenius [45] Yes Use a tree graph (3DPS) to connect the parts extracted
from 2D part detectors; Discretize state space and use the
max-product algorithm with view, skeleton, and joint an-
gle constraints

KTH Multiview
Football II

3D PCP

An interesting approach from Yamada et al. [115] ad-
dresses the problem of dataset bias in discriminative 3D
pose estimation models. Under covariate shift setup, a
mapping is learned based on a weighted set of train-
ing image-pose pairs. The training instances are re-
weighted by the importance weight to remove the train-
ing set bias. They finally propose weighted variants of
kernel regression and twin Gaussian processes to illus-
trate the efficacy of their approach. Chen et al. [5] pro-
posed an example-based approach which focuses on the
efficient selection of features by optimizing a trace-ratio
criterion which measures the score of the selected fea-
ture component subset. During pose retrieval, a sparse
representation is used which enforces a sparsity con-
straint that ensures that semantically similar poses have
a larger probability to be retrieved. Using the selected
pose candidates of each frame, a sequential optimiza-
tion scheme is selected which employs dynamic pro-
gramming to get a continuous pose sequence. Sedai
et al. [50] introduced a learning-based method that ex-
ploits the complementary information of the shape (his-
togram of shape context) and appearance (histogram of
local appearance context) features. They cluster the
pose space into several modular regions and learn re-
gressors for both feature types and their optimal fusion
scenario in each region to exploit their complementary
information [122].

Latent variable models: Latent variables are often used
in the literature [123, 124], because it is often difficult
to obtain accurate estimates of part labels because of
possible occlusions. To alleviate the need for large la-
beled datasets, Tian et al. [114] proposed a discrimi-
native approach that employs Latent Variable Models
(LVMs) that successfully address over-fitting and poor
generalization. Aiming to exploit the advantages of
both Canonical Correlation Analysis (CCA) and Ker-
nel Canonical Correlation Analysis (KCCA), they in-
troduced a Canonical Local Preserving Latent Vari-

able Model (CLP-LVM) that adds additional regularized
terms that preserve local structure in the data. Latent
spaces are jointly learned for both image features and
3D poses by maximizing the non-linear dependencies in
the projected latent space while preserving local struc-
ture in the original space. To deal with multi-modalities
in the data, they learned a multi-modal joint density
model between the latent image features and the latent
3D poses in the form of Gaussian mixture regression
which derives explicit conditional distributions for in-
ference. A latent variable approach is also proposed by
Andriluka et al. [110]. Their objective is to estimate the
3D human pose in real-world scenes with multiple peo-
ple present where partial or full occlusions occur. They
proposed a three-step hybrid generative/discriminative
method using Bayesian formulation. They started by
employing discriminative 2D part detectors to obtain
the locations of the joints in the image. During the
second stage, people tracklets are extracted using a 2D
tracking-by-detection approach which exploits tempo-
ral coherency already in 2D, improves the robustness
of the 2D pose estimation result, and enables early data
association. In the third stage, the 3D pose is recov-
ered through a hierarchical Gaussian process latent vari-
able model (hGPLVM) which is combined with a Hid-
den Markov Model (HMM). Their method can track and
estimate poses of a number of people that behave re-
alistically in an outdoor environment where occlusions
between individuals are common phenomena.

Ek et al. [125] introduced a method which also takes
advantage of Gaussian process latent variable models
(GPLVM). They represent each image by its silhou-
ette, and model silhouette observations, joint angles and
their dynamics as generative models from shared low-
dimensional latent representations. To overcome the
ambiguity that arises from multiple solutions, the la-
tent space incorporates a set of Gaussian processes that
give temporal predictions. Finally, by incorporating a
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Table 3: 3D human pose estimation from a sequence of monocular RGB images. Wherever a second reference is provided, it
denotes the availability of source code for the method.

Year First Author Body
Model

Method Highlights Evaluation
Datasets

Evaluation
Metrics

2016 Tekin [103] No Human detection in multiple frames and motion compen-
sation to form a spatiotemporal volume with two Con-
vNets; 3D HoGs are employed and 3D pose is estimated
with KRR and KDE regression

HumanEva-I&II,
Human3.6M,
KTH Multiview
Football II

3D

2016 Zhou
[98, 111]

Yes If 2D joints are provided, a sparsity-driven 3D geomet-
ric prior and temporal smoothness model are employed;
If not, 2D joints are treated as latent variables and a deep
ConvNet is trained to predict the uncertainty maps; 3D
pose estimation via an EM algorithm over the entire se-
quence

Human3.6M,
CMU MoCap,
PennAction

3D

2015 Hong [101] Yes A multimodal deep autoencoder is used to fuse multiple
features by unified representations hidden in hypergraph
manifold; Backpropagation NN learns a non-linear map-
ping from 2D silhouettes to 3D poses

HumanEva-I,
Human3.6M

3D, MJAE

2015 Schick [112] Yes Discretize search space with supervoxels to reduce search
space and apply them to 3DPS; Min-sum algorithm for
pose inference

HumanEva-I,
UMPM

3D
3D pose

2015 Wandt [113] Yes 3D poses as a linear combination of base poses using
PCA; Periodic weight is used to reduce the complexity
and the camera parameters; 3D pose is estimated alterna-
tively

KTH Multiview
Football II,
CMU MoCap,
HumanEva-I

3D

2013 Sedai [53] Yes Hybrid approach for 3D pose tracking; Gaussian Process
regression model for the discriminative part combined
with the annealed particle filter to track the 3D pose

HumanEva-I &
II

3D

2013 Tian [114] No Introduce a CLP-LVM to preserve local structure; Learn a
multi-modal joint density model in the form of Gaussian
Mixture Regression

CMU MoCap,
Synthetic

3D

2012 Andriluka
[109]

No Exploit human context information towards 3D pose es-
timation; Estimate 2D Pose using a multi-aspect flexible
pictorial structure model; Estimate 3D pose relying on a
joint GPDM as a prior with respect to latent positions

Custom 3D

2012 Yamada [115] No Assume covariate shift setup and remove training set bias
by re-weighting the training instances; Formulate two
regression-based methods that utilize these weights

HumanEva-I,
Synthetic

3D, MJAE

2011 Chen [5] No Visual feature selection and example-based pose retrieval
via sparse representation; Sequential optimization via DP

HumanEva-I,
Synthetic

Weighted
3D

2010 Andriluka
[110]

Yes Employ 2D discriminative part multi-view detectors and
follow a tracking-by-detection approach to extract people
tracklets; Pose recovery with hGPLVM and HMM

HumanEva-II,
TUD Stadtmitte

3D

2010 Bo [116, 117] No Background subtraction, HoG extraction and TGP regres-
sion

HumanEva-I 3D

2010 Valmadre
[118, 119]

Yes Rigid constraints can be enforced only on sub-structures
and not in the entire body; Estimation performed with a
deterministic least-squares approach

CMU MoCap Qualitative

2009 Rius [120] Yes Action-specific dynamic model discards non-feasible
body postures; Work within a particle filtering framework
to predict new body postures given the previously esti-
mated ones

HumanEva-I,
CMU MoCap

3D

2009 Wei [121] Yes Enforce independent rigid constraints in a number of
frames and recover pose and camera parameters with a
constrained nonlinear optimization algorithm

CMU MoCap 3D
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back-constraint, they learn a parametric mapping from
pose to latent space to enforce a one-to-one correspon-
dence. Another interesting approach is provided by An-
driluka and Sigal [109] who proposed a 3D pose esti-
mation framework of people performing interacting ac-
tivities such as dancing. The novelty of their approach
lies in the fact that by taking advantage of the human-to-
human context (interactions between the dancers) they
estimate the poses more accurately. After detecting peo-
ple over time in the videos and focusing on those who
maintain close proximity, they estimate the pose of the
two people in 2D by proposing a multi-person picto-
rial structure model that considers the human interac-
tion. To estimate the 3D pose they use a joint Gaus-
sian Process Dynamic Model (GPDM) as a prior, which
captures the dependencies between the two people, and
learn this model by minimizing the negative log of pos-
terior with respect to the latent positions and the hyper-
parameters that they define. To perform inference of the
final pose, a gradient-based continuous optimization al-
gorithm is used. A pose prior for 3D human pose track-
ing which (i) has lower complexity than GPDM, (ii) can
handle large amounts of data and, (iii) is consistent if
geodesic distances are used instead of other metrics is
proposed by Simo-Serra et al. [126].

Discussion of rigid constraints: Wei and Chai [121]
proposed a 3D reconstruction algorithm that recon-
structs 3D human poses and camera parameters from
a few 2D point correspondences. Aiming to eliminate
the reconstruction ambiguity, they enforced indepen-
dent rigid constraints across a finite number of frames.
A constrained nonlinear optimization algorithm is fi-
nally used to recover the 3D pose. Later, Valmadre and
Lucey [118] explored the method of Wei and Chai [121]
and contradicted some of its statements. They demon-
strated that camera scales, bone lengths, and absolute
depths cannot be estimated in a finite number of frames
for a 17-bone body model and that rigid constraints can
be enforced only on sub-structures and not in the entire
body. They proposed a deterministic least-squares ap-
proach, which exploits the aforementioned results and
estimates the rigid structure of the torso, the camera
scale, the bone lengths and the joint angles. The method
of Radwan et al. [74] that was mentioned in the previous
section utilizes techniques of these two approaches and
extends their findings by requiring only a single image.

Particle filter algorithm: The particle filter algorithm is
effective for 3D human motion tracking [127], and the
works of Sedai et al. [53] and Liu et al. [128] have pro-
vided some extensions that improve its accuracy. Liu et
al. [128], proposed an exemplar-based conditional parti-

cle filter (EC-PF) in order to track the full-body human
motion. For EC-PF, system state is constructed to be
conditional to image data and exemplars in order to im-
prove the prediction accuracy. The 3D pose is estimated
in a monocular camera setup by employing shape con-
text matching when the exemplar-based dynamic model
is constructed. In the work of Sedai et al. [53], a hybrid
approach is introduced that utilizes a mixture of Gaus-
sian Process (GP) regression models for the discrimina-
tive part and a motion model with an observation likeli-
hood model to estimate the pose using the particle filter.
The discrete cosine transform of the silhouette features
is used as a shape descriptor. GP regression models give
a probabilistic estimation of the 3D human pose and
the output pose distributions from the GP regression are
combined with the annealed particle filter to track the
3D pose in each frame of the video sequence. Kine-
matic constraints are enforced and a 16-joint cylindrical
model is employed. Promising results are reported on
both single- and multiple-camera tracking scenarios.

Action-specific human body tracking: Works that be-
long to this category use a priori knowledge on move-
ments of humans while performing an action. Jaeggli
et al. [129] proposed a generative method combined
with a learning-based statistical approach that simul-
taneously estimates the 2D bounding box coordinates,
the performed activity, and the 3D body pose of a hu-
man. Their approach relies on strong models of prior
knowledge about typical human motion patterns. They
use a Locally Linear Embedding (LLE) on all poses in
the dataset that belong to a certain activity to find an
embedding of the pose manifolds of low dimensional-
ity. The reduced space has mappings to both the origi-
nal pose space and the appearance (image) space. The
mapping from pose to appearance is performed with
a Relevance Vector Machine kernel regressor and the
min-sum algorithm is employed to extract the optimal
sequence through the entire image sequence. Rius et
al. [120] discuss two elements that can improve the ac-
curacy of a human pose tracking system. First, they
introduce an action-specific dynamic model of human
motion which discards the body configurations that are
dissimilar to the motion model. Then, given the 2D po-
sitions of a variable set of body joints, this model is used
within a particle filtering framework in which particles
are propagated based on their motion history and previ-
ously learned motion directions.

Finally, the interested reader is encouraged to refer
to the publications of Sigal and Black [130], Bray et
al. [131], and Agarwal and Triggs [64], all of which
introduced seminal methods on the 3D pose estimation
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problem from monocular images. Since all three are
covered in previous surveys [30, 31] they will not be
further analyzed in the present review.

4.2. Recovering 3D Human Pose from a Sequence of
Multi-view Images

The publications discussed in this category are shown
in Table 4. The approaches of Belagiannis et al. [46] and
Sigal et al. [135] employed 3D human models to esti-
mate the pose from a sequence of frames in multi-view
scenarios. The method of Belagiannis et al. jointly es-
timates the 3D pose of multiple humans in multi-view
scenarios. In such cases, more challenges arise, some
of which are the unknown identity of the humans in dif-
ferent views and the possible occlusions either between
individuals or self-occlusions. Similar to the method
of Burenius et al. [45] the first obstacle that the au-
thors wanted to overcome is the high dimensional com-
plex state space. Instead of discretizing it, they used
triangulation of the corresponding body joints sampled
from the posteriors of 2D body part detectors in all pairs
of camera views. The authors introduced a 3D picto-
rial structures (3DPS) model which infers the articu-
lated pose of multiple humans from the reduced state
space while at the same time resolving ambiguities that
arise both from the multi-view scenario and the multiple
human estimation. It is based on a Conditional Ran-
dom Field (CRF) with multi-view potential functions
and enforces rotation, translation (kinematic) and colli-
sion constraints. Finally, by sampling from the marginal
distributions, the inference on the 3DPS model is per-
formed using the loopy belief propagation algorithm.
Belagiannis et al. [134] extended the previous method,
by making the 3DPS model temporally consistent. In
their method, they first recover the identity of each in-
dividual using tracking and afterwards infer the pose.
Knowing the identity of each person results in a smaller
state space that allows efficient inference. A temporal
term for regularizing the solution is introduced which
penalizes candidates that geometrically differ signifi-
cantly from the temporal joint and ensures that the in-
ferred poses are consistent over time. Furthermore, Be-
lagiannis et al. [139] built upon their aforementioned
works by using a 3DPS model under different body part
parametrization. Instead of defining the body part in
terms of 3D position and orientation they retained only
the position parameters and implicitly encoded the ori-
entation in the factor graph.

A 3DPS model is also employed by Amin et al. [133]
to find an initial 3D pose estimation which is then up-
dated by utilizing information from the whole test set,
since key frames are selected based on the agreement

between models in the ensemble or with an AdaBoost
classifier which uses three types of features. Their
method incorporates evidence from these keyframes and
refines the 2D model and improves the final 3D pose es-
timation accuracy. Sigal et al. [135] proposed a prob-
abilistic graphical model of body parts which they call
loose-limbed body model [140] to obtain a representa-
tion of the human body. They use bottom-up part detec-
tors to enhance robustness and local spatial (and tem-
poral) coherence constraints to efficiently infer the final
pose. The main differences from the aforementioned
methods are that it applies to single human pose estima-
tion and that the Particle Message Passing method they
use to infer the pose from the graphical model, works
in a continuous state space instead of a discretized one.
The proposed method works both for pose estimation
from a single image and for tracking over time by prop-
agating pose information over time using importance
sampling.

Elhayek et al. [100] proposed a novel marker-less
method for tracking the 3D human joints in both in-
door and outdoor scenarios using as low as two or three
cameras. For each joint in 2D, a discriminative part-
based method was selected which estimates the unary
potentials by employing a convolutional network. Pose
constraints are probabilistically extracted for tracking,
by using the unary potentials and a weighted sampling
from a pose posterior guided by the model. These con-
straints are combined with a similarity term, which mea-
sures for the images of each camera, the overlap be-
tween a 3D model, and the 2D Sums of Gaussians (SoG)
images [141]. A new dataset called MPI-MARCOnI
[99, 100] was also introduced which features 12 scenes
recorded indoors and outdoors, with varying subjects,
scenes, cameras, and motion complexity.

Finally, Daubney [136] introduced a method that per-
mits greater uncertainty in the root node of the proba-
bilistic graph that represents a human body by stochas-
tically tracking the root node and estimating the pos-
terior over the remaining parts after applying temporal
diffusion. The state of each node, excluding the root, is
represented as a quaternion rotation and all the distribu-
tions are modeled as Gaussians. Inference is performed
by passing messages between nodes and the Maximum-
a-Posteriori (MAP) estimated pose is selected.

Markerless Motion Capture using skeleton- and mesh-
based approaches: Although such approaches form a
different category since they may require a laser scan to
extract the 3D mesh model, we will point out two meth-
ods for completeness that are illustrative and estimate
the human body pose in 3D. Given an articulated tem-
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Table 4: 3D human pose estimation from a sequence of multi-view RGB images. The Body Model column indicates whether a
body model is employed. The Method Highlights column reflects the most important steps in each publication.

Year First Author Body
Model

Method Highlights Evaluation
Datasets

Evaluation
Metrics

2015 Elhayek [100] Yes Marker-less tracking of human joints; ConvNet-based 2D
joint detection is combined with a generative tracking algo-
rithm based on the Sums of Gaussians.

MARCOnI,
HumanEva-I

3D

2015 Moutzouris
[132]

Yes Training: Activity Manifolds are learned by Hierarchi-
cal Temporal Laplacian Eigenmaps; Testing: Pose is con-
strained by the hierarchy of Activity Manifolds; Hierarchi-
cal Manifold Search explores the pose space with inputs the
observation and the previously learned activity manifolds

HumanEva-II 3D

2014 Amin [133] Yes 3DPS model for initial 3D pose estimation; Key frames are
selected based on ensemble agreement and discriminative
classification; 2D model is refined with that evidence to im-
prove the final 3D pose estimation

MPII Cooking,
Shelf

3D PCP

2014 Belagiannis
[134]

Yes Tracking for identity recovery and recover the pose by
adding a temporal term to the 3DPS model

Campus, Shelf,
KTH Multiview
Football II

3D PCP

2014 Belagiannis
[46]

Yes Use 2D body part detectors and reduce pose space by trian-
gulation; Introduce 3DPS model based on a CRF for infer-
ence

Campus, Shelf,
HumanEva-I,
KTH Multiview
Football II

3D
3D PCP

2012 Sigal [135] Yes Loose-limbed body model representation with continuous-
valued parameters and bottom-up part detectors; Belief
propagation for inference

HumanEva-I 3D

2011 Daubney
[136]

Yes Increasing uncertainty in the root node of the probabilistic
graph by stochastically tracking the root node and estimat-
ing the posterior over the remaining parts

HumanEva-I 3D

2011 Liu [137] Yes Use of shape priors for multi-view probabilistic image seg-
mentation based on appearance, pose and shape information

Custom 3D

2009 Gall [138] Yes Local pose optimization and re-estimation of labeled bones;
Positions of the vertices are refined to construct a surface
which will be the initial model for the next frame

HumanEva-II,
Custom

3D

plate model and silhouettes (extracted by background
subtraction) from multi-view image sequences, Liu et
al. [137] and Gall et al. [138] proposed methods that
recover the movement not only of the skeleton but also
the 3D surface of a human body. In both cases, the 3D
triangle mesh surface model of the tracked subject in
a static pose and the skinning weights of each vertex
which connect the mesh to the skeleton can be acquired
either by a laser scan or by shape-from-silhouette meth-
ods. In the work of Gall et al. [138] the skeleton pose
is optimized locally and labeled bones (misaligned or
with less than three DOF) are re-estimated by global
optimization such that the projection of the deformed
surface fits the image data in a globally optimal way.
The positions of all vertices are then refined to fit the
image data and the estimated refined surface and skele-
ton pose serve as initialization for the next frame to be
tracked. Liu et al. [137] used shape priors to perform

multi-view 2D probabilistic segmentation of foreground
pixels based on appearance, pose and shape informa-
tion. Their method can handle occlusions in challenging
realistic human interactions between people.

5. Existing Datasets and Evaluation Measures

5.1. Evaluation Datasets
Discussing the advances in human pose estimation,

Moeslund et al. [30] pointed out in their survey in 2006,
that a limitation of existing research was the comparison
of different approaches on common datasets and perfor-
mance evaluation of accuracy against ground truth. The
HumanEva dataset created by Sigal et al. [36] addresses
exactly these issues. It contains multiple subjects per-
forming a set of predefined actions with several repeti-
tions. It is a comprehensive dataset that contains syn-
chronized video from multiple camera views, associ-
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Table 5: Evaluation datasets for the 3D pose estimation task and their key characteristics.
Year Dataset No. of Videos No. of subjects Characteristics

2015 MARCOnI [100] 12 Varies Multi-view, Indoor & Outdoor, Varying num-
ber and types of cameras, and conditions

2015 PosePrior [142] N/A N/A Prior based on Pose-Conditioned Joint Angle
Limits

2014 Human 3.6M [143] 1,376 11 15 actions, 3.6 × 106 poses
2014 Campus [46] 1 3 Multiple People, Outdoor
2013 KTH Multiview Football II [144] 4 2 4 actions
2012 MPII Cooking Activities [145] 44 12 65 actions
2011 Shelf [146] 1 4 Multiple People
2011 UMPM [147] 36 30 Multiple People
2010 HumanEva-I&II [36] 56 4 6 actions
2010 TUD Stadtmitte [110] 1 N/A Multiple People, Outdoor, Qualitative
2009 TUM Kitchen [148] 20 4 4 actions
2009 UVA 3D [149] 12 N/A Outdoor
N/A CMU Mocap [150] 2,605 109 23 actions

ated 3D ground truth, quantitative evaluation measures,
and a baseline human tracking algorithm. It is divided
into two sets (I & II) with different number and types of
video cameras, a different numbers of motions, different
types of data and synchronization. The datasets are bro-
ken into training, validation, and test sub-sets. For the
testing subset, the ground truth data are withheld and a
web-based evaluation system is provided. It is by far the
most widely used dataset in the literature since it allows
different methods to be fairly compared using the same
data and the same error measures. A recognition-based
motion capture baseline on the HumanEva-II dataset is
provided by Howe [151]. Nevertheless, there are other
significant datasets available for benchmarking (e.g., the
CMU Graphics Lab Motion Capture database [150], the
Human 3.6M dataset [143, 152] or the KTH Multiview
Football Dataset II [144]). We present a summary of
them in Table 5.

Limitations of the available datasets: Existing re-
search, constrained by the available datasets, has ad-
dressed mainly the 3D pose estimation problem in con-
trolled laboratory settings where the actors are perform-
ing specific actions. This is due to the fact that collect-
ing videos in unconstrained environments with accurate
3D pose ground truth is impractical. Following the ex-
ample of the HumanEva and the Human3.6M datasets,
which have contributed to advances in the field over re-
cent years, there is a need for realistic datasets which
should be captured (i) in as unconstrained and varying
conditions as possible where occlusions can occur, (ii)
with several people with varying anthropometric dimen-
sions, (iii) with not necessarily only one actor per video
(iv) with actors that wear loosely fitting clothing, and
(v) with human-human and human-object interactions.

5.2. Evaluation Metrics

The variety of challenges that arise in the human pose
and motion estimation task result in several evaluation
metrics adapted to the problem that the authors are try-
ing to address each time. Thus, a fair comparison be-
tween the discussed methods would be impossible even
for approaches that use the same dataset, since differ-
ent methods train and evaluate differently. For the Hu-
manEva dataset [36], the authors introduced the 3D Er-
ror (E) which is the mean squared distance in 3D (mea-
sured in millimeters) between the set of virtual markers
corresponding to the joint centers and limb ends:

E(x, x̂) =
1
M

M∑
i=1

||mi(x) − mi(x̂)|| , (1)

where x represents the ground truth pose, x̂ refers to
the estimated pose, M is the number of virtual markers
and mi(x) represents the 3D position of the ith marker.
It is also referred to as Mean Per Joint Position Error
(MPJPE) [143]. Simo-Serra et al. [79] introduced a
rigid alignment step using least squares to compare with
methods that do not estimate a global rigid transforma-
tion. They refer to this error as 3D pose error.

A common 2D pose estimation error in the literature
is the Percentage of Correctly estimated Parts (PCP) er-
ror which measures the percentage of correctly local-
ized body parts [153]. The PCP error has recently been
used in 3D [45, 46, 112, 133] and a part is classified as
“correctly estimated” if:

∥sn − ŝn∥ + ∥en − ên∥
2

≤ α ∥sn − en∥ , (2)
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Table 6: 3D pose error (i.e., after performing rigid alignment) in mm of methods that employ information from a monocular single
image on the HumanEva-I dataset. Results are reported for camera C1 and S1, S2 and S3 refer to the three subjects that perform
the action.

Year Method
Walking Jogging

S1 S2 S3 Average S1 S2 S3 Average

2016 Yasin et al. [65] 35.8 32.4 41.6 36.6 46.6 41.4 35.4 41.1
2014 Kostrikov et al. [68] 44.0 30.9 41.7 38.9 57.2 35.0 33.3 41.8
2014 Wang et al. [70] 71.9 75.7 85.3 77.6 62.6 77.7 54.4 64.9
2013 Radwan et al. [74] 75.1 99.8 93.8 89.6 79.2 89.8 99.4 89.5
2013 Simo-Serra et al. [75] 65.1 48.6 73.5 62.4 74.2 46.6 32.2 51.0
2012 Simo-Serra et al. [79] 99.6 108.3 127.4 111.8 109.2 93.1 115.8 106.0
2010 Bo and Sminchisescu [116] 38.2 32.8 40.2 37.1 42.0 34.7 46.4 41.0

where sn and en represent the ground truth 3D coordi-
nates of the start and end points of part n, ŝn and ên the
respective estimations, and α is the parameter that con-
trols the threshold.

Evaluation measurements are frequently used to cap-
ture error in degrees. Illustrative examples can be
found in the early publications of Agarwal and Triggs
[64, 154] and in the work of Ning et al. [40]. The Mean
Joint Angle Error (MJAE) is the mean (over all angles)
absolute difference between the true and estimated joint
angles in degrees, and is given by:

MJAE =

M∑
i=1

|(yi − y′i) mod ± 180o|

M
, (3)

where M is the number of joints and yi and y′i are the es-
timated and ground truth pose vectors respectively and
mod is the modulus operator. The mod ± 180o term
reduces angles to the [−180o,+180o] range.

5.3. Summary of performance on HumanEva-I

Aiming to better understand the advantages and limi-
tations of various 3D human pose estimation approaches
we focused on the HumanEva-I dataset, grouped the re-
spective methods based on the input (e.g., single image
or video, monocular or multi-view), and report perfor-
mance comparisons in each category. In Table 6 we re-
port the 3D pose error (i.e., after performing rigid align-
ment as suggested by Simo-Serra et al. [79]) of meth-
ods that employ information from a single monocular
image. Tables 7 and 8 summarize the results (3D er-
ror in mm) of methods, the input of which is a single
multi-view image or a video respectively. However, this
comparison is just meant to be indicative, and cannot be
treated as complete, since: (i) it covers a subset of the
state of the art, and (ii) different methods are trained and

evaluated differently depending on the problem that are
trying to address.

From the approaches that use a single monocular im-
age as an input, the best results for each action are ob-
tained by the methods of Yasin et al. [65], Kostrikov et
al. [68] and Bo and Sminchisescu [116]. The key char-
acteristic of Yasin et al. [65] is that they employ infor-
mation from 3D motion capture data and project them
in 2D so as to train a regression model that predicts the
3D-2D projections from the 2D joint annotations. Af-
ter estimating the 3D pose of a new test image, the 2D
pose can be refined and iteratively update the 3D pose
estimation.

For the results reported in Table 6, motion capture
data from the HumanEva-I dataset is used to train the
regressor. When the motion capture data are from a dif-
ferent dataset (e.g., CMU Mocap [150]), the 3D pose er-
ror is 55.3 mm for the walking action, which is still bet-
ter than most of the methods. However, for the jogging
action, the respective average 3D pose error is 67.9 mm
from which we conclude that estimating the 3D pose for
more complicated and not cyclic actions without con-
strained prior information (i.e., 3D motion capture data
from the same dataset) still remains a challenging task.
Kostrikov et al. [68] proposed a method that uses re-
gression forests to infer missing depth data of image
features and 3D pose simultaneously. They hypothe-
size the depth of the features by sweeping with a plane
through the 3D volume of potential joint locations and
employ a 3D PSM to obtain the final pose. Unlike Yasin
et al. [65], a limitation of this approach is that it re-
quires the 3D annotations during training to learn the
3D volume. Finally, Bo and Sminchisescu [116] fol-
lowed a regression-based approach that uses Gaussian
process prior to model correlations among both inputs
and outputs in multivariate, continuous valued super-
vised learning problems. The advantages of their ap-
proach are that it does not require an initial pose to
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Table 7: 3D Error (E) in mm of single-image, multi-view
methods of subject S1 on the HumanEva-I dataset.

Year Method Walking Boxing

2013 Amin et al. [60] 54.5 47.7
2012 Sigal et al. [135] 89.7 N/A
2011 Yao et al. [123] 44.0 74.1
2010 Taylor et al. [124] 55.4 75.4

perform an optimization scheme or a 3D body model
such as the method of Wang et al. [70]. However, back-
ground subtraction is utilized, which is a strong assump-
tion that prevents this method of dealing with real-life
scenarios with a changing background.

An interesting observation arises from the reported
results of methods that employ information from mul-
tiple views whether it’s from a single image (Table 7)
or from a sequence of images (Table 8). That is, the
3D error of the method of Amin et al. [60] that uses
a single multi-view image is significantly lower than
the 4 methods reported in Table 8 the input of which
are multi-view videos. An explanation for this is that
video-based methods do not exploit fully the temporal
information (e.g., by following a tracking-by-detection
approach [110]). Finally, the 3D error reported by Tekin
et al. [103] which is based on a monocular sequence of
images is lower in the walking sequence than the rest
of the methods regardless of the number of views. The
key characteristic of this regression-based approach is
that they exploit temporal information very early in the
modeling process, by using a Kernel Dependency Es-
timation (in the case of HumanEva-I) to shift the win-
dows of the detected person so as the subject remains
centered. Then 3D HoG features are extracted to form a
spatiotemporal volume of bounding boxes, and a regres-
sion scheme is employed to predict the final 3D pose.

In summary, although model-based approaches have
demonstrated significant improvements over the past
few years, regression-based approaches, despite their

Table 8: 3D Error (E) in mm of video-based methods of sub-
ject S1 on the HumanEva-I dataset. The first two approaches
employ information from a sequence of monocular images
whereas the last four are multi-view.

Year Method Walking Boxing

2016 Tekin et al. [103] 37.5 50.5
2010 Bo and Sminchisescu [116] 45.4 42.5
2015 Elhayek et al. [100] 66.5 60.0
2014 Belagiannis et al. [46] 68.3 62.7
2012 Sigal et al. [135] 66.0 N/A
2011 Daubney and Xie [39] 87.3 N/A

own limitations which are described in detail in Sec-
tion 1.2 and in the review of Sigal [37], tend to outper-
form the rest, at least in the HumanEva-I dataset.

6. Experimental Evaluation

In order to provide the reader with an overview of the
current capabilities of 3D human pose estimation tech-
niques we conducted extensive experimentations with
three state-of-the-art approaches, namely the methods
of Wang et al. [70], Zhou et al. [72] and Bo and Smin-
chisescu [116] (presented in detail in Section 3.1). In-
stead of evaluating these methods in existing real-world
datasets, we decided to go for a more generic evalua-
tion and specifically developed a 3D synthetic dataset
that simulates the human environment, i.e., the Syn-
Pose300 dataset. The idea is to be able to fully con-
trol the testing environments and human poses and en-
sure a common evaluation setup, which would have not
been possible using actual people/actors (e.g., due to hu-
man and time constraints). SynPose300 can be used by
the research community as supplementary to the exist-
ing datasets when the goal is to test the robustness of
3D pose estimation techniques to (i) different anthropo-
metric measurements for each gender; (ii) the viewing
distance and the angle; (iii) actions of varying difficulty;
and (iv) larger clothes. The SynPose300 dataset and the
ground truth are released publicly for the reproducibility
of the results and are available online at [155]. Various
experiments were conducted using this open framework
and insights are provided.

Limitations: When designing the conditions of the pro-
posed dataset we focused only on specific parameters
(anthropometry, action, clothes, distance and angle from
the camera). Thus, the conditions in which the synthetic
human models act, such as the background and lack of
noise, are not realistic. The available options for the
clothes of the human models were limited and, as a re-
sult, we used jeans and jackets in the large clothes cate-
gory since loosely fitting garments such as dresses were
not available.

The rest of this section is structured as follows. Sec-
tion 6.1 provides the description of SynPose300 and in
Section 6.2 the experimental investigation of the chosen
approaches is presented.

6.1. Description of the Proposed Synthetic Dataset

As mentioned in the introduction of this section, we
evaluated the state-of-the-art 3D pose estimation ap-
proaches of Wang et al. [70], Zhou et al. [72] and Bo
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and Sminchisescu [116] - the code of which is pub-
licly available - on a synthetic dataset (SynPose300)
we created for this paper. Existing datasets cover in
great depth pose variations under different actions and
scenarios. However, they contain a small number of
humans of unknown anthropometric measurements, in
controlled environments, who wear tight clothes which
facilitate the pose estimation task. For example, all ac-
tors in the Human3.6M dataset [143] wear shorts and t-
shirts, whereas in the HumanEva dataset [36] only one
out of four subjects is female and only one wears clothes
which are not tight.

To provide an even more challenging evaluation
framework, SynPose300 provides a controlled environ-
ment where the aforementioned constraints are taken
into consideration. SynPose300 comprises 288 videos,
their respective 3D ground truth joint locations (25-
limb models) and the parameters of the camera (focal
length, location and translation matrices). Each video is
five seconds long (24 fps), encoded using Xvid encoder
(800x600 resolution, RGB images). The videos were
generated using the open source software tools Make-
Human [156] and Blender [157]. The ground truth was
computed for each video using the .bvh files. First, each
video was exported from Blender in Biovision Hierar-
chy format. The resulting files were further processed
in MATLAB and for each frame of the video, we parsed
the 3D coordinates for all 26 joints. Its summary can be
found in Table 9.

Table 9: SynPose300 Dataset summary

Subjects 8 (4 female & 4 male)
Percentiles (%) 20, 40, 60, 80
Actions 3
Distances 2 (close, far)
Points of View 3 (0o, 45o, 90o)
Types of Clothes 2 (Tight, Large)

It contains videos from eight virtual humans (four fe-
male and four male) all of which follow specific anthro-
pometric measurements in percentiles obtained from the
CAESAR anthropometric database [158]. For example,
a 20th percentile male, is a male with 20th percentile seg-
ments. The measurements we used are the stature, the
spine to shoulder distance, the shoulder to elbow dis-
tance, the elbow to wrist distance, the knee height, the
hip to knee distance, the hip circumference, the pelvis
to neck distance and the neck to head distance. The hu-
mans perform three actions (“walking”, “picking up a
box” and “gymnastics”) that were selected based on the
3D pose estimation difficulty they present. Each video

was captured with both tight and larger clothes, from
three points of view (0o, 45o, 90o) and from two camera
distance ranges (close and far). In the “close” scenario,
the distance of the human model from the camera in the
first frame ranges from 3 m to 5 m and was selected so
the human was as close as possible to the camera, but
without getting out of the camera’s field of view while
performing the action. In the “far” case, the distance is
twice as much.

In general, background subtraction methods are em-
ployed as a pre-processing step to isolate humans from
the background [159]. Therefore, in our tests we do not
employ background. Illustrative examples of the pro-
posed dataset are depicted in Figure 6.

Figure 6: Illustrative frames of the SynPose300 dataset. The
first row corresponds to 20th, 40th and 80th percentile females
wearing tight clothes, performing three actions from a “close”
camera distance, and under (0o, 45o, 90o) points of view. The
second row corresponds to males of the same percentiles wear-
ing large clothes, at the same frame of the video, performing
the same actions from a “far” camera distance.

6.2. Experimental Results

The methods of Wang et al. [70] and Zhou et al. [72]
represent a 3D pose as a combination of a set of bases
(i.e., 3D human poses) which are learned from the
whole SynPose300 dataset. In both methods, the dic-
tionary of poses is learned using sparse coding. Once
the set of bases is computed, 2D pose estimation is per-
formed to obtain the joint locations in the image plane.
Then, starting from an initial 3D pose, an Alternating
Direction Method of Multipliers (ADMM) optimization
scheme is followed to estimate the joint locations in 3D.
A more extensive investigation on the impact of the dic-
tionary of bases, on the 3D pose estimation accuracy is
offered in Experiment 3. Other parameters required as
prior information for both methods are (i) the structure
of the 2D skeletal model and (ii) the structure of the 3D
skeleton both of which remained unchanged throughout
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Figure 7: Comparison of the performance of four state-of-the-art approaches for female (left) male (right) body models for the
walking action with varying percentiles of anthropometric measurements.

the experimental investigation. For the 2D pose estima-
tion task we employed the approach of Yang and Ra-
manan [61], which uses a pre-trained 2D human skele-
tal model trained on the PARSE dataset [160]. To eval-
uate the regression-based method of Bo and Sminchis-
escu [116], background subtraction is first performed so
as to keep only the region where the human is located
in each frame, and HoG features are extracted. Aim-
ing to keep the length of the feature vector consistent
throughout the video sequence, we first resized the ob-
tained region to the size of the bounding box of the first
frame and then computed the HoG features. From the
provided techniques, we evaluated the Twin Gaussian
Processes with K Nearest Neighbors and the Weighted
K-Nearest Neighbor Regression methods.

To speed-up the experimental procedure and since
temporal information from the video is not exploited,
we processed one every five frames for each video.
Thus, 3D pose estimation was performed in 24 monoc-
ular images per video. Finally, the evaluation metric we
chose is the 3D pose error which is the mean Euclidean
distance between the estimation and the ground truth af-
ter performing a rigid alignment of the two shapes as
proposed by Simo-Serra et al. [79].

Experiment 1 - Robustness to different anthropomet-
ric measurements: The objective of this experiment is
to assess the impact of different anthropometric mea-
surements on the 3D pose estimation task. The obtained
results are summarized in Figure 7. The anthropometry
of the human whose pose we want to estimate affects
the 3D pose estimation accuracy when the model-based
approach of Wang et al. [70] is tested. In that case, the
error is increasing more than 20% when we use a 40th

instead of a 20th percentile female. For the rest of the
techniques, the anthropometry of the human does not

affect the pose estimation accuracy.

Experiment 2 - Robustness to viewing distance and
point of view: The objective of this experiment is to
assess the robustness of the 3D pose estimation ap-
proaches to different points of view and distances from
the camera. A summary of the results is offered in Ta-
ble 10. The camera view affects the pose accuracy,
as estimating the 3D pose from a wider angle is a
more challenging task since occlusions between differ-
ent parts take place. When the camera is placed at a
close distance from the human, the approaches of Zhou
et al. [72] and the Weighted KNN of Bo and Sminchis-
escu [116] have an average 3D pose error of 35.3 and
26.1 mm over all videos of the walking action when the
point of view is 0o. When the angle of the camera is
at 90o, all four methods performed significantly worse.
A similar pattern is followed when the distance from
the camera is increased, since the average error over all
angles increased by 12.33% for the method of Wang et
al. [70] and 15.32% for the Weighted KNN method of
Bo and Sminchisescu [116]. For both model-based ap-
proaches, the change of the angle of the camera from 0o

to 45o does not affect significantly the pose estimation
accuracy since the 3D shape can be reconstructed from
the available poses in the dictionary with approximately
the same error. Furthermore, we observed that the ap-
proach of Zhou et al. [72] was more robust to angle and
distance variations, and that at 90o, for all four methods,
the change of distance of the camera does not affect sig-
nificantly the 3D pose error, since the pose is already
difficult to be estimated accurately.

Experiment 3 - Robustness to the error imposed
by the dictionary of poses: For the model-based ap-
proaches of Wang et al. [70] and Zhou et al. [72] the

20



Table 10: 3D pose error in mm for four state-of-the-art methods under different distances from the camera and points of view for
the walking action.

Close Far

0o 45o 90o 0o 45o 90o

Wang et al. [70] 106.7 108.6 131.7 126.4 125.3 135.9
Zhou et al. [72] 35.3 37.6 41.2 38.4 38.8 43.0
Bo and Sminchisescu [116] - WKNN 26.1 38.8 52.5 26.4 53.3 56.4
Bo and Sminchisescu [116] - TGPKNN 154.4 180.8 167.2 139.2 164.2 170.1

dictionary was comprised of poses of both different an-
thropometric measurements and 3D pose stances than
the ground truth. Aiming to investigate the sensitivity
of the pose estimation task to the initialization of the 3D
pose and the set of poses in the dictionary we experi-
mented under two scenarios. In the first case, the pro-
vided initial 3D pose has varying anthropometric mea-
surements, but the rest of the conditions are kept the
same and the pose stance of the humans is 100 % accu-
rate. For example, for a 20th percentile female in the jth

frame of a video, we provide each time the pose of the
jth frame of similar videos of a different percentile fe-
male. Note that in this experiment we investigated only
the method of Wang et al. [70], since its accuracy de-
pends more on the conditions of experimental setup. A
summary of the results can be found in Tables 11 and
12. In both female and male cases, the 3D pose er-
ror increases when the provided initial anthropometry
is far from the real one. However, the errors obtained
in this experiment are lower than all the other scenar-
ios from which we can conclude that finding the correct
pose stance - even when the anthropometry of the esti-
mated human is wrong - is the most challenging task in
the 3D pose estimation problem.

Table 11: 3D pose error in mm for females when the pose
stance of the initial pose is correct and the anthropometric
measurements vary. The rows correspond to the anthropomet-
ric measurements of the ground truth whereas the columns to
the anthropometric measurements of the initial pose provided
as an input.

F20 F40 F60 F80

F20 - 37 75 103
F40 53 - 34 66
F60 70 34 - 32
F80 101 65 40 -

In the second case, the dictionary of poses is com-
prised of poses only from the respective video, and thus
it has the correct anthropometric measurements but an
inaccurate pose stance which has to be estimated. The

Table 12: 3D pose error in mm for males when the pose stance
of the initial pose is correct and the anthropometric measure-
ments vary. The rows correspond to the anthropometric mea-
surements of the ground truth whereas the columns to the an-
thropometric measurements of the initial pose provided as an
input.

M20 M40 M60 M80

M20 - 37 75 110
M40 41 - 51 75
M60 83 44 - 82
M80 109 73 45 -

method of Zhou et al. [72] was tested and the results
obtained from the second scenario are presented in Fig-
ure 8. When the dictionary contains poses that belong
only from the same video, there is a 31.4% decrease in
the 3D pose error for the walking action and a 24.3%
for the picking-up-box action which is of medium diffi-
culty. The error in the third and most challenging action
is reduced only by 6.9%, and the reason for this is the
really challenging nature of the gymnastics action.
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Figure 8: The impact of the bases in dictionary on the 3D pose
error for actions of varying difficulty for the method of Zhou
et al. [72]

Experiment 4 - Robustness to actions with different
levels of difficulty and to large clothing: The objec-
tives of these experiments are to test the importance of
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Table 13: The impact of the difficulty of the action and the type of clothes is investigated for four state-of-the-art approaches.

Actions Clothes

Walking Picking up box Gymnastics Tight Large

Wang et al. [70] 105.4 295.2 331.4 129.1 118.6
Zhou et al. [72] 38.5 92.6 200.3 38.3 35.4
Bo and Sminchisescu [116] - WKNN 40.6 90.6 214.3 39.3 41.8
Bo and Sminchisescu [116] - TGPKNN 162.6 287.0 318.9 159.8 165.5

the impact of actions with varying difficulty and cloth-
ing of a human on the 3D pose estimation performance.
The results for different types of actions and clothes
are depicted in Table 13. As the difficulty of the ac-
tion increases (from walking to pick up box and then to
gymnastics), the error increases in all cases. The ap-
proaches of Zhou et al. [72] and the Weighted KNN
of Bo and Sminchisescu [116] demonstrated small 3D
pose errors for the first two actions compared to the
other two techniques. In the gymnastics action which
demonstrates high variance and challenging poses, the
major source of error is in the estimated pose and
not in depth. When different types of clothes model-
based methods performed better with larger clothes
whereas regression-based approaches demonstrated bet-
ter results with tighter clothes. This behavior can be
attributed to the fact that regression-based techniques
like the Weighted KNN or the Twin Gaussian Pro-
cesses KNN rely on image-based features (i.e., HoGs),
whereas the methods of Wang et al. [70] and Zhou et
al. [72] require an initial model and a skeleton struc-
ture that tend to generalize better when the human wears
larger clothes and thus, the human silhouette covers a
larger region.

Comparison with the originally reported results: For
completeness we present the evaluation results of the
two state-of-the-art methods as reported in the respec-
tive publications. We compare the results obtained
from the “walking” action in our investigation with
the method of Wang et al. [70] and Bo and Sminchis-

Table 14: 3D pose error in mm of the methods of Wang et
al. [70] and Bo and Sminchisescu [116] in the walking actions
for camera C1 of the HumanEva-I dataset. S1, S2 and S3 refer
to the three subjects that perform the action.

Dataset [70] [116]

HumanEva-I S1 71.9 38.2
HumanEva-I S2 75.7 32.8
HumanEva-I S3 85.3 40.2
SynPose300 105.4 40.6

escu [116] which are tested in the walking action of the
HumanEva-I dataset. The reported results are presented
in Table 14. The results of both methods are better than
those obtained from our experimental investigation for
the walking action, and the reason for this is that the
conditions under which we tested the robustness of the
3D pose estimation accuracy are more challenging.

Aiming to identify which joints contribute the most
towards the final error, we also compute the average 3D
pose error per joint throughout the whole dataset and the
results are depicted in Figure 9. Joints that belong to the
main body, such as the neck, pelvis and hips, contribute
relatively little towards the total error compared to the
wrists or the feet.
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Figure 9: Mean 3D pose error per joint throughout the whole
dataset for the Weighted KNN method of Bo and Sminchis-
escu [116]. L corresponds to left and R to right.

Finally, we present examples of failures and success-
ful estimations of the method of Wang et al. [70] in im-
ages of the SynPose300 dataset. In Figure 10, given the
same frame (first image) and the same 2D joint loca-
tions, by applying the method of Wang et al. [70] twice,
different results are obtained. In the second image the
pose estimation algorithm fails since the estimated pose
is presented facing the opposite direction. The reasons
for this behavior are: a) the ill-posed nature of the prob-
lem and b) the human is bending and thus, the 2D loca-
tions are misleading for the recovery of the 3D joints.

22



(a)

0.4
0.2

0
-0.2

-0.4-0.2

0

0.2

0.3

0.2

0

-0.1

-0.2

-0.3

0.1

0.4

(b)

0.5
0

-0.5-0.2

0

0.2

-0.3

0

0.1

0.2

0.3

-0.2

-0.1

0.4

(c)
Figure 10: For the same image frame (a), we present examples where the method of Wang et al. [70] fails (b), and successfully
estimates (c), the 3D pose of the human subject. The green solid line human skeleton corresponds to the ground truth and the red
dashed line to the estimated 3D pose.

7. Conclusion

In this paper, we offer an overview of recently pub-
lished papers addressing the 3D pose estimation prob-
lem from RGB images or videos. We proposed a tax-
onomy that organizes pose estimation approaches into
four categories based on the input signal: (i) monocular
single image, (ii) single image in multi-view scenario,
(iii) sequence of monocular images, and (iv) sequence
of images in multi-view settings. In each category, we
grouped the methods based on their characteristics and
paid particular attention to the body model when em-
ployed, to the pose estimation approach used, how in-
ference is performed, and to other important steps such
as the features or the pre-processing methods used. We
created a synthetic dataset of human models perform-
ing actions under varying conditions and assessed the
sensitivity of the pose estimation error under different
scenarios. The parameters we investigated were the an-
thropometry of the human model, the distance from the
camera and the point of view, the clothing and the action
performed.

Articulated 3D pose and motion estimation is a chal-
lenging problem in computer vision that has received a
great deal of attention over the last few years because
of its applications in various scientific or industrial do-
mains. Research has been conducted vigorously in this
area for the past few years, and much progress has been
made in the field. Encouraging results have been ob-
tained, strong methods have been proposed to address
the most challenging problems that occur and current
3D pose estimation systems have reached a satisfac-
tory maturity when operating under constrained condi-
tions. However, they are far from reaching the ideal goal
of performing adequately in the conditions commonly
encountered by applications utilizing these techniques

in practical life. Thus, 3D pose estimation remains a
largely unsolved problem and its key challenges are dis-
cussed in the rest of this section.

The first challenge is the ill-posed nature of the 3D
pose estimation task especially from a single monoc-
ular image. Similar image projections can be derived
from completely different 3D poses due to the loss of
3D information. In such cases, self-occlusions are com-
mon phenomena, which result in ambiguities that pre-
vent existing techniques from performing adequately.
A promising solution towards this direction is utilizing
temporal information or multi-view setups which can
resolve most of the ambiguities that arise in monocular
scenarios [110, 134].

The second issue is the variability of human poses
and shapes in images or videos in which the subjects
perform complicated actions such as the gymnastics ac-
tion in the proposed SynPose300 dataset. To address
this issue future approaches can benefit from the recent
release of the PosePrior dataset [142] which includes a
prior that allows anthropometrically valid poses and re-
stricts the ones that are invalid.

A third challenging task is the estimation of the 3D
pose of multiple people who interact with each other
and with the environment. In such cases handling oc-
clusions is a difficult task since, besides self-occlusions,
occlusions of limbs can also occur from other people or
objects. Methods that employ a tracking-by-detection
approach in a multi-view setup [46, 110, 134] can over-
come most of these difficulties and address this problem
successfully.

Finally, 3D pose estimation cannot be successfully
incorporated in real-life applications unless future ap-
proaches are able to perform sufficiently in outdoor en-
vironments where the lighting and background condi-
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tions as well as the behavior of the humans subjects are
unconstrained. Although datasets in unconstrained out-
door environments with accurate 3D pose ground truth,
would result into future approaches that would tackle
these limitations, their creation is almost unrealistic due
to the size of hardware equipment that is required to
capture 3D data. A few methods [46, 149] have tried
to address this limitation, by providing datasets (along
with 3D annotation of the joints) in outdoor environ-
ments but they are far from simulating effectively real-
life conditions.
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