
Uncovering the Strength of Capsule Networks in
Deepfake Detection

Dan-Cristian Stanciu, Bogdan Ionescu
AI Multimedia Lab, Politehnica University of Bucharest, Romania

Email: {dan.stanciu1203, bogdan.ionescu}@upb.ro

Abstract—Information is everywhere, and sometimes we have
no idea if what we read, watch or listen is accurate, real
or authentic. This paper focuses on detecting deep learning
generated videos, or deepfakes - a phenomenon which is more and
more present in today’s society. While there are some very good
methods of detecting deepfakes, there are two key elements that
should always be considered, i.e. no method is perfect and deep-
fake generation techniques continue to evolve, sometimes even
faster than detection methods. In our proposed architectures, we
focus on a family of deep learning methods that is new, has several
advantages over traditional convolutional neural networks and
has been underutilized in the fight against fake information i.e.,
the Capsule Networks. We show that (i) state-of-the-art Capsule
Network architectures can be improved in the context of deepfake
detection, (ii) they can be used to obtain accurate results using
a very small number of parameters, and (iii) Capsule Networks
are a viable option over deep convolutional models. Experimental
validation has been conducted on two publicly available datasets,
namely FaceForensics++ and CelebDF, showing very promising
results.

Index terms: deepfake, capsule networks, deep learning, digital
video forensics, face manipulation

I. INTRODUCTION

We live in the era of information. Every day, millions
of new articles, videos or social media posts are available
to us and only a few clicks away, and because of that,
people are more informed and knowledgeable about the past,
present and future than ever before. But while technology
brings big improvements into our lives, it also comes with
some problems, the biggest of which is disinformation. While
there are many types of disinformation, in this paper we will
outline one in particular i.e. the generation of fake information,
mainly in video format - deepfakes. The generation of realistic
fake multimedia content became a possibility following the
introduction of Generative Adversarial Networks (GAN) [3].
Ideas based on GAN or autoencoder architectures helped
create multiple open-source programs that aid the generation
of realistic deepfakes, like FaceSwap-GAN [5] or FaceApp[4].
Deepfakes created using these algorithms can be used to
impersonate people, for blackmail, to spread fake news or to
defame celebrities.

Deepfake detection has been an interesting field of study for
a lot of researchers in the last years and as a result, there are
many different approaches to deepfake detection. The most
popular and successful approaches can be split into 5 main
categories, by approach methodology, which are: (i) frequency
domain approaches, (ii) approaches based on finding artifacts

in the image, (iii) approaches based on finding inconsistencies
in physiological signals, (iv) deep convolutional approaches
and (v) time domain approaches.

In this paper, we use a new element of Capsule Net-
works, along with convolutional models, feature extractors
and time domain approaches like LSTM. We bring several
improvements over the current state of the art architectures
and validate our models on two publicly available datasets:
FaceForensics++ [1] and CelebDF [2].

The remainder of this article is structured as following:
Section II presents an overview of the literature on deepfake
detection and Capsule Networks and our contribution beyond
the state of the art, Section III describes our Capsule Network
models, their architectures, particularities and improvements
over existent approaches, Section IV contains our training
methodology, models, hyperparameters, datasets, evaluation
metrics and results, and a comparison with the state of the
art. Conclusions are presented in Section V.

II. RELATED WORK

In this section, we will present the following topics related
to our contribution: (i) available deepfake detection datasets,
(ii) best state-of-the-art approaches for deepfake detection and
(iii) the evolution of Capsule Networks, their advantages,
disadvantages and their use in the deepfake detection task.

Deepfake detection datasets. Today, deepfakes are more
unrecognisable than ever before, and most humans have a hard
time differentiating between real and fake videos. Because of
that, the interest in detecting them has grown significantly.
There is an increasing need of data depicting deepfakes, to
help deep learning algorithms learn to discern a fake video
from a real one. At the moment, there are multiple open-
source datasets available with that exact purpose. The majority
of datasets share the following characteristics: videos of short
length (10-20 seconds), depicting adult humans filmed at a
close distance, the majority of which are talking and remaining
fairly stationary. The main type of manipulation used is the
identity swap: using the face of another person to replicate
the original person’s characteristics and facial expressions, by
blending a generated face onto the original video. There are
3 generations of deepfake detection datasets, categorised by
the realism of the deepfakes, number of videos, quality of
videos, number of different people in the videos or the consent
of the actors present in the videos. Two of the most popular
public datasets for deepfake detection are FaceForensics++ [1]



and CelebDF [2]. FaceForensics++ contains 1000 real videos
from YouTube, 1000 deep learning generated identity swap
videos [17] and 1000 videos generated with a public FaceSwap
software [16]. CelebDF is a 2nd generation dataset, containing
890 real videos and 5639 deepfake videos obtained from
identity-swapping between 59 celebrities, with 10 different
video scenarios for each celebrity.

Deepfake Detection Approaches. The detection of deep-
fakes remains an open problem. In spite of the fact that
deepfake detection systems continue to evolve and obtain
better results, the same thing is happening to deepfake gen-
eration techniques. Furthermore, while detection methods are
extremely diverse, no method is perfect and many of them
suffer from generalization issues.

Convolutional approaches for deepfake detection may be the
most reliable, because they are not based on a limited set of
features. State-of-the-art architectures like XceptionNet [25]
showed success in multiple approaches [1] [6] [29]. One of
the most successful models using XceptionNet is presented in
the paper ”Detecting Deepfakes with Metric Learning” [41],
which combined an Xception feature extractor with a triplet
approach to obtain a 99.2% AUC on the CelebDF dataset.

Due to the fact that the deepfake detection databases contain
video content, leveraging the temporal dimension using recur-
rent neural networks or LSTM [23] proved to be successful
in multiple papers [31], [21], [40] [34]. An approach by De
Lima et al [40] includes several ways of using and combining
3D and 2D convolutional layers, like R3D [42] or I3D [43]
to leverage the temporal dimension. A few notable results are
a 97.59% AUC for the I3D architecture and 99.73% AUC for
the R3D architecture. I3D is based on InceptionV1 [44] and
uses Inception blocks, but uses 3D convolution instead of 2D
convolution, applied on groups of frames from the video. The
R3D architecture also uses groups of 16 consecutive frames as
an input and follows the original 3D Residual Networks [42].

Capsule networks in deepfake detection. Capsule Net-
works are an emerging concept in the field of Machine
Learning. Although they were first introduced in 2011 by
G. Hinton [45], they did not become a popular method until
2017, when S. Sabour, N. Frosst and G. Hinton introduced
the routing by agreement algorithm [46] which would help
train the capsules and propagate information through layers of
capsules. The idea of a Capsule is based on the fact that every
value in a convolutional neural network is a scalar instead
of a vector. Therefore, Capsules were introduced as vectorial
units which contain information on multiple dimensions. This
can help with many shortcomings of traditional Convolutional
Neural Networks (CNN).

Although, at the moment, Capsule Networks do not outper-
form traditional Convolutional Networks in computer vision
tasks, they solve some limitations for CNNs that often times
could lead to poor performance. One of the aspects that George
Hinton criticises regarding Convolutional Neural Networks is
the use of Pooling layers. While pooling is one of the key
contributors to the success of convolutional neural networks,
it has one crucial drawback: information is lost in the pooling

process. In some cases, information like the position of an
object could be lost while information about the presence of
an object goes deeper into the network. While most of the time
we only need to determine whether an object is in the image,
there are cases where the position of that object is as important
as its existence. In the case of detecting human faces, a neural
network looks for key elements like eyes, nose or mouth,
but may not look for their position because a max pooling
layer deletes that information. So, according to the ”Picasso
problem”, if the eyes of a person are located near the mouth,
a traditional convolutional network would still detect a person
in that image. On the other hand, using a vector to define the
features in the eyes could account for elements like position,
color, skewness, texture, deformation etc. Another drawback
of using the pooling operation is presented in a paper regarding
the explainability of Capsule Networks, by Shahroudnejad et
al [47]. Because the pooling operation discards features, the
CNN needs to compensate by requiring more training data.
More than that, CNNs require a longer duration of training
because they need to be big in depth to perform, whereas
Capsule Networks need to be more wide than deep [47].

Many Capsule Network architectures are composed of the
same basic elements: a feature extractor CNN, a set of primary
capsules and a set of secondary capsules. The data from the
CNN is shaped in the form of capsules: vectors of fixed dimen-
sion. Those are the primary capsules. The secondary capsules
are usually bigger and can represent something tangible (eg:
a capsule for every class). The primary capsules are linked to
the secondary capsules using the dynamic routing algorithm
presented in [46]. The values for every primary capsule are
multiplied by a weight matrix so the result has similar length
to the secondary capsules, called a prediction vector. Basically,
the primary capsules try to guess what values will be in the
secondary capsules. The values for every secondary capsule
are calculated by using the dynamic routing algorithm, which
outputs a weighted sum of the predictions from the primary
capsules. To calculate the weights, the algorithm goes through
a number of iterations in which capsules with predictions
closer to the weighted mean will be assigned a greater weight
(starting from weights equally distributed among capsules).
Nonlinearity is introduced using the ”squash” function, which
squashes the vector to a maximum length of 1 while retaining
its direction. The weights are bigger for prediction vectors
that agree with each other and smaller for those who do not.
There are multiple ways to output predictions using secondary
capsules. A method presented in [46] is to calculate the length
of the secondary capsules and assign that to a probability.
Other methods include using the first value in the capsules
as a probability for that class or using fully connected layers
which result in output probabilities.

Looking at their advantages, we can see that Capsule
Networks are a good fit for detecting deepfakes. Their ability
to generalize, the small number of parameters used, their
invariance to transforms applied to the image like affine
transforms, rotation, dimension or perspective changes and a
possible resistance to attacks [49] are all desirable qualities



in a deepfake detection model. One disadvantage of capsule
networks is that capsules are limited in how much they can
learn, so they sometimes perform worse than traditional CNNs
on large and diverse datasets like ImageNet [30].

Two papers by Nguyen et al [50] [51] highlight the pos-
sibility of using Capsule Networks for the task of deepfake
detection. The papers present an architecture containing the
following elements: a feature extractor (CNN), a number of
branches containing convolutional layers which lead to the
primary capsules, a stats pooling [52] layer which calculates
the mean and variance of each filter, the primary capsules and
2 output capsules for the 2 classes: real and fake. In [50],
different Capsule Network architectures were used, the best
of which scored a 93.11 binary classification accuracy on the
FaceForensics++ dataset using only 3.9 million parameters.
Tolosana et al [24] used the same Capsule Network archi-
tecture, which yielded a 99.52% AUC on FaceForensics++
and a 82.46% AUC performance on the much more difficult
CelebDF database. Additionally, the first paper by Nguyen
et al, Capsule Networks were tested on the Replay-Attack
database [53] and yielded perfect results.

III. PROPOSED METHOD

In this section, we present our approaches using multiple
Capsule Network architectures that we implemented, their
components, their improvements over already existent models,
and their advantages. In this paper, we advance the state of
the art by using our Capsule Network architectures. We have
achieved the following feats:

• We uncovered the unexploited power of capsule networks
in the deepfake detection task.

• We experiment on 2 real world datasets, achieving per-
formances over the state of the art.

• We are able to maintain state-of-the-art performances
while significantly reducing the number the parameters.

Capsule Network models. Our main contribution in this
paper is the implementation of several Capsule Network
models that are used to detect deepfakes. Capsule Networks
bring several big improvements over CNN architectures that
can be leveraged for the deepfake detection task.

While using Capsule Networks in the deepfake detection
task is not a new idea [50] [51] and it has already been imple-
mented by Nguyen et al, we believe that their implementation
has a few shortcomings that prevent it from reaching high
levels of performance. In our search for the best architectures,
we start from this state-of-the-art implementation and adjust or
correct the models to increase their performance. The Capsule-
Forensics architecture presented in [50] [51] starts with a
part of a pretrained VGG-19 model, used to extract features
which will be later transformed into primary capsules. Before
creating the primary capsules, a stats pooling layer [52] is
used. It calculates the mean and standard deviation for the
filters. After that, 3 to 10 primary capsules are formed, with
8 features each. The next step is the routing by agreement
algorithm, which performs a weighted sum of the prediction
vectors obtained from the primary capsules. Two iterations are

used in the dynamic routing by agreement algorithm. Nguyen
et al use 2 output capsules, one for each class (deepfake and
real), which are 4x1 vectors. Finally, The resulted values go
through a softmax layer and an average function to predict
the deepfake probability. Using 3.9 million parameters, the
authors of the papers [50] [51] managed to obtain a 93.11%
Accuracy on binary classification for the FaceForensics++
database. Using the same architecture, Tolosana et al [24]
scored 99.52% AUC for FaceForensics++ and 82.46% AUC
for CelebDF.

Our CapsuleNet architectures aim to solve the problems
in the Capsule-Forensics architecture [50] [51] and leverage
Capsule Networks in multiple sizes and complexities, archi-
tectures and configurations. We kept the default elements of
a Capsule Network architecture, while correcting some of the
shortcomings in the Capsule-Forensics architecture presented
above. Our architecture is presented in Fig. 3. All of our
Capsule Network components, changes or improvements are
listed below:

• We used part of a pretrained VGG19 convolutional net-
work to extract features for the primary capsules. For the
bigger models, we used the first 8 convolutional layers,
resulting in about 2.3 million parameters total. For other
models, we used as few as the first 3 convolutional layers,
resulting in under 500,000 trainable parameters. We used
finetuning in all of our models.

• While the stats pooling layer used by Nguyen et al
could be useful and has the big advantage of making
the network invariant to input size, it goes against one
of the main principles of Capsule Networks: the use
of pooling layers eliminates lots of useful information
and, although statistics with stats pooling layers might
help, we believe that they may have a negative effect on
the models, hindering the performance of the capsules
overall. Therefore, we decided to not use the stats pooling
layer. A next logical step is training a CNN extractor
without the use of MaxPooling layers. However, that idea
will be used in future improvements.

• The authors of [50] decided to use between 3 and 10
primary capsules. The effect of this choice is one of the
following: (1) every primary capsule will have a big im-
portance in the calculation of the values for the secondary
capsules, or (2) a small number of capsules will have
a role in the calculation of secondary capsules values.
Therefore, for this architecture to work, the capsules will
need to be error prone. On the other hand, by using a big
number of capsules, the routing algorithm will use only
use capsules which ”agree with each other”, eliminating
noise and poor predictions. By having a wider capsule
network, it matters less that every capsule predicts a
correct value, because the algorithm concentrates more
on the agreement between primary capsules. For that
reason, our architectures use a big number of 8D primary
capsules. We also try to use very big primary capsules to
determine if they provide an advantage.



Fig. 1. CapsuleNet architecture for our best model. It is composed of the following building blocks: (1) Part of a VGG19 extractor, (2) Primary capsule
layer: 9x9 Conv2d with stride=2, 32 filters, (3) Primary capsules, obtained by flattening the output of the previous block (4) The dynamic routing algorithm,

(5) The resulted secondary capsules, (6) Prediction using the features from the secondary capsules in fully connected layers, with dropout enabled

• While we initially tried using one secondary capsule for
each class, we also tried using more secondary capsules
than available classes. In most of the cases, we used 16
secondary capsules of 16x1 dimension, followed by fully
connected decision layers which would determine if the
image is deepfake or not. We also used dropout to ensure
that no single feature from the secondary capsules would
become too important. This approach resulted in better
performance on the Celeb-DF dataset.

• Using a big number of loops in the dynamic routing
algorithms ensures that the secondary capsules will be
obtained using a better set of weights, because the regres-
sion to the mean will be more accurate. The authors of
[50] and [51] only used 2 loops to determine the weights,
while we use a minimum of 3 and a maximum of 5.

• The architecture presented in Fig. 3 can detect deepfakes
at the frame level. But, deepfakes are often videos, so we
need to consider the evolution in time in these videos. We
do that by using LSTM together with features extracted
from the Capsule Networks. The CapsNet-LSTM models
use the same architecture presented in Fig. 3, but instead
of having fully connected layers after the secondary cap-
sules, they use the features in the capsules as descriptors
for the images. The CapsNet-LSTM models expect 256
consecutive frames from the video as an input. They
use the secondary capsule values from those frames as
an input for a 2-layer LSTM, resulting in a temporal
descriptor for the whole video. An output layer is used
to make the decision between deepfake and real.

Although we propose several different Capsule Network

architectures, the majority of them follow a similar pattern,
shown in Fig. 3: (1) a pretrained CNN feature extractor,
which will be fine-tuned during training, (2) a primary capsule
layer, which uses parallel convolutional layers on the output
of the CNN separately. Each cube from Fig. 3 contains
32x15x15=7200 features, so each of the 8 primary capsule
layers is used to determine one of the 8 dimensions of the
7200 primary capsules, (3) the primary capsules, obtained
from flattening the results of the parallel convolutional layers
and stacking them, (4) the dynamic routing algorithm, which
contains a high number of loops to ensure that the weights
for the secondary capsules are as accurate as possible and
distant predictions will have small weight values, (5) the set
of secondary capsules, which contains more capsules than
the number of classes, (6) an output part, which uses fully
connected layers with the features from the secondary capsules
to obtain a prediction (using a dropout layer to prevent
overfitting).

IV. EXPERIMENTAL RESULTS

This chapter contains information regarding our experimen-
tal setups and results. We will present the datasets used for the
experiments, their preprocessing and the evaluation metrics,
our convolutional models used as baselines, our Capsule Net-
work models and their hyperparameters and the experimental
results obtained using those models, compared to the state of
the art.

Datasets and evaluation. We used 2 datasets for training
and evaluation: CelebDF [2] and FaceForensics++ [1]. Face-
Forensics++ is a generation I dataset and contains 1000 real
videos, 1000 deepfakes and 1000 identity change videos which



Fig. 2. Preprocessing algorithm, used in our previous work [34]. Pre-
processing steps: (1) Face detection, (2) extraction of facial landmarks
with OpenFace2 [27], (3) extraction and alignment of the facial region,

(4) background elimination, (5) image resizing

are not created using deep learning. We decided to use 1000
real videos ans 1000 deepfakes for training and evaluation.
We split the dataset into 80% training data and 20% test data.
Furthermore, we decided to train and test the algorithms on
the uncompressed part of the dataset.

The datasets contain videos of both real humans and deep-
fakes, their length being, on average, over 10 seconds. The
preprocessing algorithm is similar to the one used on our
previous work [34] regarding the detection of deepfakes. We
know that deepfakes in both datasets are created by using
person identity change, so the only region of interest for
our algorithms is the face. Therefore, we extract the facial
region only from each video frame. Our preprocessing pipeline
contains the following steps: (1) face detection, (2) detection
of certain facial landmarks using the open-source software
OpenFace2 [27], (3) extraction of the facial region using the
outer facial landmarks (face contour and eyebrow landmarks),
(4) elimination of background, to ensure that no added noise
is present in the image, (5) resizing the image to 299x299.
This process is applied to the first 256 frames of every video.
A diagram depicting this process is shown in Fig. 1.

CelebDF is a harder generation II dataset which contains
5,639 deepfakes of celebrities and 590 real videos of celebri-
ties and 300 YouTube videos. For evaluation purposes, we
use the train-test split recommended by the authors [2]: 514
videos are used for evaluation, while the rest are used for
training. The evaluation set contains 178 real videos and
336 deepfakes, which is important because the set is fairly
balanced, with more than 1/3 of the evaluation data being real
videos (compared to the training data, which has a ratio of
over 7:1 in favour of the deepfakes). For training, we used
16 random frames for each class, every epoch. We also only
use 50% of the training data for each epoch, picked randomly.
This, combined with the fact that we pick random video frames
each epoch, ensures that it is harder than usual to overfit the
model, with the disadvantage that it may take more epochs to
obtain the best results. More than that, for CelebDF, we use 7
parts deepfakes and 3 parts real videos for training to ensure
more data balance when training. The training data is also
slightly augmented by adding noise, changing the brightness
or randomly flipping the images. The data is also normalized
to fit the ImageNet distributions.

Because the aim of this paper is binary classification, the
AUC-ROC score is the best evaluation metric. By using AUC

Fig. 3. Baseline CNN-LSTM models. (1) 256 features are extracted for
each of the 60 frames, (2) the features are input to a 2-layer LSTM,
which outputs a temporal descriptor, (3) fully connected layers are used

to predict whether the image is real or deepfake

(Area Under Curve), we do not need to use a threshold for
decision, because the metric evaluates the area under the
True Positive vs False Positive curve at different thresholds.
Basically, AUC measures how well a model can separate
positive examples from negative examples. Another advantage
of AUC is the fact that it is less sensitive when it comes
to unbalanced datasets, like CelebDF, compared to Accuracy.
Due to the fact that the training data is in video form, the
evaluation is done in 2 ways:

• For models which do not contain a temporal neural
network, we use the mean deepfake probability for every
frame in the video.

• For models with LSTM, we use the features from 256
consecutive frames and LSTM to output a deepfake
probability value for the video.

Baseline convolutional models. We implemented 2 state-
of the art CNN models for comparison: ResNet-50 [54] and
XceptionNet [25]. XceptionNet is state-of-the-art and it is used
in numerous implementations [1] [6] [29] [34].

To create a basis for comparison, we train the 2 mentioned
architectures for the task of deepfake detection on both Face-
Forensics++ and CelebDF. We started from models pre-trained
on the ImageNet [30] dataset and replaced the output layer
with fully connected layers and a dropout layer. The models
are fine-tuned during training.

We mentioned earlier that many deepfake detection architec-
tures are image-level and do not include the evolution in time.
Our CNN models are no exception. Therefore, it is important
that we enhance them to include the temporal dimension. With
that in mind, we use Long-Short Term Memory (LSTM) [23]
cells to ensure that the time evolution of the videos is not
omitted. LSTM architectures are state-of-the-art in temporal
sequences like video thanks to their ability to handle both long
and short term dependencies in the sequence. They are often
time used for tasks like video classification, person reidentifi-
cation, object tracking or generation of video descriptions and
understanding video context.



In our latest work [34], we ran experiments which demon-
strated the viability and performance increase of CNN-LSTM
architectures over image-level CNN architectures. We will
be using the same architecture for our experiments, while
also adding an additional ResNet-50-LSTM architecture. We
also use a similar approach for the input sequences and
architectures, which is also presented in Fig. 2: as an input,
we use groups of 60 frames, sampled as 6 frames/second (so,
every 5th frame of the video). We use pretrained XceptionNet
or ResNet-50 models as feature extractors, for every frame.
The resulted feature vectors go into a 2-layer LSTM which
outputs a temporal descriptor. We use a 2-layer LSTM because
our experiments showed a slight performance increase when
using more than 1 layer, but a significant training time increase
when using 3 or more. The temporal descriptor is fed into
a group of decision fully connected layers, resulting in a
prediction.

The architectures below are used for the CNN models
we trained to help as a baseline for the evaluation of the
CapsNet models. All the CNN architectures were pretrained
on ImageNet and finetuned.

• ResNet-50 - model trained on both FaceForensics++ and
CelebDF on image level.

• XceptionNet - model trained on both FaceForensics++
and CelebDF on image level.

• ResNet-50-LSTM - model trained on both FaceForen-
sics++ and CelebDF on 60 frames 1/5 seconds apart.

• XceptionNet-LSTM - model trained on both FaceForen-
sics++ and CelebDF on 60 frames 1/5 seconds apart.

Capsule Network Models. In this subchapter we will
present all the architectures we tested and evaluated.

The models below represent all the Capsule Network ar-
chitectures we used in the experiments. The VGG19 feature
extractors used in the models were pretrained and finetuned
while training. The majority of the models use 3 iterations for
the dynamic routing algorithm and were trained and evaluated
on CelebDF, unless stated otherwise.

• CapsNet-2caps - Capsule Network using 1800 8D pri-
mary capsules and 2 16D secondary capsules, one for
each class. The loss function used was Capsule loss,
identical to the one used in [46]. Used for training only
on the FF++ dataset, due to the fact that performance on
CelebDF was low (under 80% AUC).

• CapsNet-10caps - Capsule Network using 7200 primary
capsules of length 8 and 10 secondary capsules + fully
connected layers for decision.

• CapsNet-LSTM-16caps-60frames - Capsule Network us-
ing 2048 primary capsules of length 8, 16 secondary cap-
sules, 2-layer LSTM with 256 features + fully connected
layers for decision. The LSTM was trained alongside the
Capsule Network.

• CapsNet-BigCaps - Capsule Network architecture using
7200 primary capsules of length 8 and 16 secondary
capsules of length 16 + fully connected layers for de-
cision. Biggest model, with size approximately equal to

XceptionNet. Trained in 2 configurations: using 3 and 5
iterations for the dynamic routing algorithm.

• CapsNet-BigCaps-LSTM - using CapsNet-BigCaps for a
feature extractor for every one of the first 256 consecutive
frames for videos, then training a 2-layer, 256 features
LSTM + fully connected layers for decision. The separate
training sessions were due to a hardware limitation.

• CapsNet-BigCaps-GradientClipping - CapsNet-BigCaps
architecture, without dropout but using gradient clipping
for regularization. Gradient clipping value=1.

• CapsNet-MediumParam - Capsule Network architecture
using 1568 primary capsules of length 8 and 16 secondary
capsules of length 16 + fully connected layers for deci-
sion. Trained in 2 configurations: using 3 and 5 iterations
for the dynamic routing algorithm.

• CapsNet-MediumParam-8caps - identical to CapsNet-
MediumParam, but using 8 secondary capsules instead
of 16

• CapsNet-LowParam - Capsule Network architecture us-
ing 784 primary capsules of length 8 and 8 secondary
capsules of length 16 + fully connected layers for deci-
sion. Also using a smaller part of the VGG19 - only the
first 5 convolutional layers.

• CapsNet-LowestParam - Capsule Network architecture
using 121 primary capsules of length 8 and 8 secondary
capsules of length 16 + fully connected layers for de-
cision. Also using a smaller part of the VGG19 - only
the first 3 convolutional layers. More than that, rather
than using parallel convolution primary capsule layers to
create the elements for the primary capsules, we use 2
convolutional layers with a high stride value to reduce
the size of the data and we reshape the resulted data in
the form of capsules. The total number of parameters for
this model is under half a million.

• CapsNet-Narrow-32 - A more narrow Capsule Network
architecture. Uses 32 primary capsules of length 1024 and
16 secondary capsules of length 16 + fully connected
layers for decision. Training time for this model is 8-
10 times the training time for the wide primary capsules
models.

Training and hyparameters. For the CNN and CNN-
LSTM models using XceptionNet and ResNet-50, we used
an approach similar to our previous work [34]: we trained
the models using a 5x10-4 value for the learning rate with a
0.92 learning rate decay factor, with an Adam optimizer and a
batch size of 32. We use weight decay=10-5 and dropout=0.2.
The chosen loss function was Binary Cross-Entropy. We train
the models for 25 epochs at most, using early stopping when
needed.

For the Capsule Network models, we use a learning rate
or 10-3 which decays faster, with learning rate decay factor
between 0.8 and 0.5. That is because Capsule Networks had
the tendency to learn faster than CNN approaches. We also
use an Adam optimizer, without weight decay. The batch size
for training is 16. A more aggressive dropout value of 0.3



TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS FOR

FACEFORENSICS++

Author Model AUC[%]

Nguyen et al [50] XceptionNet 93.11
Qi et al [39] DeepRythm 98

Tolosana et al [24] XceptionNet 99.4
Tolosana et al [24] CapsNet 99.52

Proposed XceptionNet 99.63
Proposed ResNet-50 99.67
Proposed ResNet-50-LSTM 99.35

Stanciu et al [34] XceptionNet-LSTM 99.95
Proposed CapsNet-2caps 99.99

is used to help with regularization. The models were trained
for 15 epochs at most, with early stopping, due to the fact
that our Capsule Network models learned faster that the CNN
models. Lastly, we tried a variable number of dynamic routing
iterations for some architectures, between 3 and 5.

Experimental results. In this part of the paper, we will
present our results and findings. We will compare the per-
formance of our models to the state-of-the-art results on
both datasets, considering both precision and the number of
parameters used. We used a machine with a Nvidia 1070Ti
8GB graphics card and 16GB RAM for all the experiments
below.

Table I presents a comparison between our proposed meth-
ods and the state of the art on the FaceForensics++ dataset.
We can observe from the results that the dataset is fairly easy,
given that almost all presented methods achieve an AUC of
over 99%. Our CapsNet architecture with 2 class capsules
achieved an almost perfect AUC score of 99.99%, higher than
all the CNN-based approaches. We can also see from the state-
of-the-art results that the Capsule Network also performed
better than all the presented convolutional neural networks.
One conclusion we can draw from this is that, on easy datasets,
Capsule Networks are comparable or even better than other
CNN methods.

Table II presents the results for our proposed approaches
compared to other state-of-the-art approaches, on the CelebDF
dataset. First of all, we can see that approaches based on
XceptionNet also achieve very good results on this dataset.
The metric-learning XceptionNet proposed by Kumar et al
[41] achieves impressive results, crossing the 99% AUC mark.
For image-level approaches, this approach is superior to our
own convolutional approaches, which have an almost 10%
lower performance.

Our proposed baseline CNN approaches, using ResNet-50
and XceptionNet were best utilized at video level, using LSTM
to handle the time dimension. The best results are obtained
using our previous approach in [34], with Xception-LSTM.
However, the other state-of-the-art approaches in the state
of the art by De Lima et al [40] clearly outperform them.
By using 3D convolutions to handle groups of frames, these

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS FOR CELEBDF

Author Model AUC[%] Parameters

Nguyen et al [50][2] CapsNet 57.5 3.9 M
Tolosana et al [24] CapsuleNet 82.46 3.9 M
Tolosana et al [24] XceptionNet 83.6 22.8 M
Kumar et al [41] Xception

metric-learning
99.2 22 M

De Lima et al [40] I3D 97.59 12.29 M
De Lima et al [40] MC3 99.3 11.49 M
De Lima et al [40] R2Plus1D 99.43 31.30 M
De Lima et al [40] R3D 99.73 33.17 M

Proposed ResNet-50 90.02 23 M
Proposed XceptionNet 90.68 22.8 M
Proposed ResNet-50-LSTM 95.49 24 M

Stanciu et al [34] Xception-LSTM 97.06 24 M
Proposed CapsNet-BigCaps-

LSTM
98.85 24 M

Proposed CapsNet-BigCaps
5 iterations

99.88 22.4 M

Proposed CapsNet-BigCaps
3 iterations

98.95 22.4 M

Proposed CapsNet-BigCaps
GradientClipping

97.21 22.4 M

Proposed CapsNet-10caps 98.94 16.8 M
Proposed CapsNet-LSTM-16caps

60frames
99.27 12.9 M

Proposed CapsNet-MediumParam
5 iterations

99.56 6.4 M

Proposed CapsNet-MediumParam 97.79 6.4 M
Proposed CapsNet-MediumParam

8caps
97.65 4.8 M

Proposed CapsNet-LowParam 97.74 1.9 M
Proposed CapsNet-

LowestParam
63.26 0.47 M

Proposed CapsNet-Narrow-32 92.47 17.8 M

approaches surpass all other convolutional approaches, with
AUC values over 99% for 3 of the 4 models.

One of the main goals of this paper is to see if Capsule
Networks can outperform traditional CNN approaches. Previ-
ous results using Capsule Networks on the CelebDF dataset
indicate that this is not the case. In the state of the art, the
best performance of 82.46% with CapsNet was achieved in
[24], by using the Capsule Networks algorithm proposed by
Nguyen et al [50].

Our first idea was to evaluate the performance or a CapsNet
architecture with the same number of weights as the state-of-
the-art XceptionNet architecture. Our ”BigCaps” models aim
to do exactly that, as they all use approximately the same
the number or parameters in the XceptionNet architecture.
On frame-level approaches, our ”BigCaps” architecture us-
ing 3 iterations for the dynamic routing algorithm achieved
performances just shy of the ones presented in [41], which
use XceptionNet with metric learning. However, our CapsNet-
BigCaps architecture with 5 iterations used for the dynamic



routing algorithm achieved better than state-of-the-art results,
reaching 99.88% AUC. This model also outperforms the pre-
vious state-of-the-art models presented in [40], which use 3D
convolutional networks to also tackle the temporal dimension.
The following conclusions can be drawn from the experiments
using our CapsNet-BigCaps architectures:

• Capsule Networks are capable of outperforming state-of-
the-art models in deepfake detection, while using less
parameters. Our CapsNet-BigCaps-5iterations model out-
performed the best XceptionNet models by using slightly
less trainable weights and also outperformed video-level
approaches using 3D CNN, using almost 33% less pa-
rameters than the best approach (R3D [40]).

• Using more iterations for the dynamic routing algorithm
in CapsNet architectures increases performance without
the need for bigger architectures. Using 5 iterations
instead of 3 for the same architecture increased the
performance from 98.95% AUC to 99.88% AUC. While
using more loops certainly increases the prediction time,
deepfake detection is not usually a real-time task, so this
is not a significant problem.

• Using gradient clipping in Capsule Networks leads to
poorer performance, due to the fact that exploding gradi-
ents are not a concern.

• While leveraging the time component with LSTM did
not achieve better results, we must consider the follow-
ing caveats regarding hardware limitations: (1) CapsNet-
LSTM-16caps architecture uses a smaller number of
parameters, due to hardware limitations, and therefore
should not be directly compared to the BigCaps architec-
tures with almost twice as much parameters. In spite of
that, this model still achieves better results that the image-
level CapsNet-BigCaps architectures with 3 iterations; (2)
The LSTM from CapsNet-BigCaps-LSTM was trained
separately, using features extracted from the secondary
capsules, due to hardware limitations. So, while the re-
sults are good, it makes sense that they do not necessarily
outperform other architectures because the CapsNet was
not trained alongside the LSTM.

We also demonstrated that Capsule Networks outperform
convolutional approaches when using a small number of
parameters. For this we tested progressively smaller archi-
tectures, from CapsNet-MediumParam which uses 6.4 million
parameters to a very small CapsNet architecture, with only
470,000 paramaters. The following conclusions can be drawn
from the experiments:

• While the number of parameters stayed over 1.9 M,
smaller Capsule Networks perform better than the ma-
jority of CNN architectures. They achieve results over
97% AUC, which could be enough to consider the
performance-size trade-off as being favorable.

• There is not a big difference between architectures using
double the amount of primary capsules (LowParam vs
MediumParam models with the same number of itera-
tions).

• The majority of parameter cuts came from using less
primary capsules. However, in the CapsNet-LowestParam
we also lowered number of the convolutional layers
from VGG19 feature extractor. This, combined with an
even smaller number of primary and secondary capsules,
resulted in a drastic drop in performance, to 63.26%
AUC.

• Using more iterations in the dynamic routing algorithm
increases performance even in models with a smaller
number of parameters. In this situation, we can see that
the performance of the CapsNet-MediumParam model
rose significantly by just changing the number of iter-
ations, while the number of parameters remained the
same. The model with 5 iterations achieved a 99.56%
AUC performance, which is very close to the best results
for convolutional models in the state of the art, while
only using 6.4 million parameters - just over half of the
parameters in the I3D architecture in [40] or under 20%
of the parameters in the R3D architecture [40].

Lastly, we used a very narrow model with large capsules
to see if a big number of features in a primary capsule
vector would increase performance. While the results are less
impressive compared to the other wide architectures, a 92%
AUC is better than many other results in our CNN models or
in the state of the art. Therefore, we can hypothesise that there
is an optimum configuration, given the trade-off between the
length of the capsule vectors and the width of the model.

V. CONCLUSION

In this paper, we proposed several Capsule Network ar-
chitectures to aid the task of deepfake detection. We bring
several improvements to the Capsule Network models beyond
the state of the art for deepfake detection. We compere our
model’s performances with other proposed convolutional and
Capsule Network architectures. The models were trained on 2
state-of-the-art datasets: FaceForensics++ and CelebDF. For
Celeb-DF, our best model achieved 99.88% AUC, a better
performance than the best state-of-the-art models, while using
33% less trainable parameters. We also demonstrated that
Capsule Networks can be effective in the deepfake detection
task without using a large number of parameters, as several
of our low-parameter approaches achieved an AUC greater
than 97% for CelebDF, with one CapsNet architecture reaching
99.56% AUC. We concluded that using CapsNet architectures
with an increased number of iterations for the dynamic routing
algorithm increases performance, while keeping the number of
parameters constant. For future improvements, we plan to use
other novel Capsule Network architectures on bigger and more
complex datasets. Also, we want to study the length-width
trade-off for the primary capsules of a Capsule Network.

ACKNOWLEDGMENT

This work was supported under project AI4Media, A Eu-
ropean Excellence Centre for Media, Society and Democracy,
H2020 ICT-48-2020, grant #951911.



REFERENCES

[1] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess,
Justus Thies, Matthias Nießner, ”FaceForensics++: Learning to Detect
Manipulated Facial Images,” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), Seoul, Korea (South), 2019 pp. 1-11.

[2] Y. Li, X. Yang, P. Sun, H. Qi and S. Lyu, ”Celeb-DF: A Large-
Scale Challenging Dataset for DeepFake Forensics,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 2020 pp. 3204-3213.

[3] Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley,
D.; Ozair, S.; Courville, A. Bengio, ”Generative Adversarial Networks”,
2014.

[4] Faceapp, https://www.faceapp.com, (Accessed on 16/04/2021).
[5] Faceswap-GAN, https://github.com/shaoanlu/faceswap-GAN, (Accessed

on 16/04/2021).
[6] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes,

Menglin Wang, Cristian Canton Ferrer, ”The DeepFake Detection Chal-
lenge (DFDC) Dataset”, 2020.

[7] DeepFake Detection Challenge, https://www.kaggle.com/c/deepfake-
detection-challenge, (Accessed on 16/04/2021).

[8] Wang, W.; Dong, J.; Tan, T., ”Tampered Region Localization of Dig-
ital Color Images”. Digital Watermarking: 9th International Workshop,
IWDW 2010. Seoul, Korea: Springer. pp. 120–133.

[9] This Person Does Not Exist, https://thispersondoesnotexist.com, (Ac-
cessed on 16/04/2021).

[10] J. Zhu, T. Park, P. Isola, A. Efros, ”Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks,” in 2017 IEEE Interna-
tional Conference on Computer Vision, Venice, Italy, pp. 2242-2251.

[11] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt and M. Niessner,
”Face2Face: Real-Time Face Capture and Reenactment of RGB Videos,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 2016 pp. 2387-2395.

[12] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
Jaegul Choo, ”StarGAN: Unified Generative Adversarial Networks for
Multi-Domain Image-to-Image Translation”, 2018.

[13] Ivan Perov, Daiheng Gao, Nikolay Chervoniy, Kunlin Liu, Sugasa
Marangonda, Chris Umé, Mr. Dpfks, Carl Shift Facenheim, Luis RP, Jian
Jiang, Sheng Zhang, Pingyu Wu, Bo Zhou, Weiming Zhang, ”DeepFace-
Lab: A simple, flexible and extensible face swapping framework”, 2020.

[14] faceswap-GAN github. https://github.com/shaoanlu/faceswap-GAN,
(Accessed on 16/04/2021).

[15] DeepFake TIMIT Dataset, https://www.idiap.ch/dataset/deepfaketimit,
(Accessed on 16/04/2021).

[16] FaceSwap , https://github.com/MarekKowalski/FaceSwap, (Accessed on
16/04/2021).

[17] DeepFake FaceSwap, https://github.com/deepfakes/faceswap, (Accessed
on 16/04/2021).

[18] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. Ferrer, “The
Deepfake Detection Challenge (DFDC) Preview Dataset”, 2019.

[19] H.H. Nguyen, J. Yamagishi and I. Echizen, “Use of a Capsule Network
to Detect Fake Images and Videos”, 2019.

[20] Y. Li and S. Lyu, “Exposing DeepFake Videos By Detecting Face
Warping Artifacts,” in Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2019.

[21] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P.
Natarajan, “Recurrent Convolutional Strategies for Face Manipulation
Detection in Videos,” in Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2019.

[22] D. Güera and E. J. Delp, ”Deepfake Video Detection Using Recurrent
Neural Networks,” 2018 15th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), Auckland, New
Zealand, 2018, pp. 1-6.

[23] Shahroz Tariq, Sangyup Lee, Simon S. Woo, ”A Convolutional LSTM
based Residual Network for Deepfake Video Detection”, 2020.

[24] Ruben Tolosana, Sergio Romero-Tapiador, Julian Fierrez and Ruben
Vera-Rodriguez, ”DeepFakes Evolution: Analysis of Facial Regions and
Fake Detection Performance”, 2020.

[25] F. Chollet, ”Xception: Deep Learning with Depthwise Separable Con-
volutions,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017 pp. 1800-1807.

[26] S. Hochreiter and J. Schmidhuber, ”Long short-term memory. Neural
Computation”, 9(8):1735–1780, Nov. 1997.

[27] T. Baltrusaitis, A. Zadeh, Y. Lim, and L. Morency, “OpenFace 2.0:
Facial Behavior Analysis Toolkit,” in Proc. International Conference on
Automatic Face and Gesture Recognition, 2018.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ”Rethinking
the Inception Architecture for Computer Vision,” in 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 2016 pp. 2818-2826.

[29] H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. Jain, “On the Detection of
Digital Face Manipulation,” in Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[30] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, ”ImageNet: A
large-scale hierarchical image database,” IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255

[31] D. Guera and E. Delp, ”Deepfake Video Detection Using Recurrent
Neural Networks,” in 2018 15th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), Auckland, New
Zealand, pp. 1-6.

[32] DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face
Forgery Detection Liming Jiang, Ren Li, Wayne Wu, Chen Qian, Chen
Change Loy

[33] S. Suwajanakorn, S. Seitz, and I. Kemelmacher-Shlizerman, “Synthe-
sizing Obama: Learning Lip Sync From Audio,” ACM Transactions on
Graphics, vol. 36, no. 4, pp. 1–13, 2017.

[34] Deepfake Video Detection with Facial Features and Long-Short Term
Memory Deep Networks Dan-Cristian Stanciu, Bogdan Ionescu

[35] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
In ICLR, 2014.

[36] Leveraging Frequency Analysis for Deep Fake Image Recognition Joel
Frank 1 Thorsten Eisenhofer 1 Lea Sch¨onherr 1 Asja Fischer 1 Dorothea
Kolossa 1 Thorsten Holz

[37] Two-Stream Neural Networks for Tampered Face Detection Peng Zhou,
Xintong Han, Vlad I. Morariu, Larry S. Davis

[38] In Ictu Oculi: Exposing AI Generated Fake Face Videos by Detecting
Eye Blinking Yuezun Li, Ming-Ching Chang and Siwei Lyu Computer
Science Department, University at Albany, SUNY

[39] DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat
Rhythms, Hua Qi1, Qing Guo2, Felix Juefei-Xu3, Xiaofei Xie2, Lei Ma1,
Wei Feng4, Yang Liu2, Jianjun Zhao1

[40] Deepfake Detection using Spatiotemporal Convolutional Networks Os-
car de Lima, Sean Franklin, Shreshtha Basu, Blake Karwoski, Annet
George

[41] Akash Kumar and Arnav Bhavsar. Detecting deepfakes with metric
learning. arXiv preprint arXiv:2003.08645, 2020.

[42] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning spatio-
temporal features with 3d residual networks for action recognition. In
Proceedings of the IEEE International Conference on Computer Vision
Workshops, pages 3154– 3160, 2017.

[43] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 6299–6308,
2017.

[44] Going Deeper with Convolutions Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, Andrew Rabinovich

[45] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming
auto-encoders. In International Conference on Artificial Neural Networks,
pages 44–51. Springer, 2011.

[46] Dynamic Routing Between Capsules Sara Sabour Nicholas Frosst Ge-
offrey E. Hinton

[47] IMPROVED EXPLAINABILITY OF CAPSULE NETWORKS: REL-
EVANCE PATH BY AGREEMENT Atefeh Shahroudnejad† , Arash
Mohammadi , and Konstantinos N. Plataniotis

[48] J. Su, D.V. Vargas, K. Sakurai One pixel attack for fooling deep neural
networks IEEE Trans. Evol. Comput., 1–15 (2019),

[49] EFFECTIVE AND EFFICIENT VOTE ATTACK ON CAPSULE NET-
WORKS Jindong Gu1,3 , Baoyuan Wu2 , Volker Tresp1,

[50] USE OF A CAPSULE NETWORK TO DETECT FAKE IMAGES AND
VIDEOS Huy H. Nguyen? , Junichi Yamagishi?†‡, and Isao Echizen?†§

[51] Nguyen H.H., Yamagishi J., Echizen I. (2022) Capsule-Forensics Net-
works for Deepfake Detection. In: Rathgeb C., Tolosana R., Vera-
Rodriguez R., Busch C. (eds) Handbook of Digital Face Manipulation
and Detection. Advances in Computer Vision and Pattern Recognition.
Springer, Cham.



[52] Rahmouni N, Nozick V, Yamagishi J, Echizen I (2017) Distinguishing
computer graphics from natural images using convolution neural net-
works. In: International workshop on information forensics and security
(WIFS). IEEE

[53] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in International Conference of the
Biometrics Special Interest Group (BIOSIG), 2012.

[54] Deep Residual Learning for Image Recognition Kaiming He Xiangyu
Zhang Shaoqing Ren Jian Sun

[55] Rethinking the Inception Architecture for Computer Vision Christian
Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew
Wojna

[56] Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan, Andrew Zisserman

[57] Capsule Networks – A survey Author links open overlay panelMensahK-
wabena PatrickaAdebayoFelix AdekoyaaAyidzoeAbra MightybBaagyire
Y.Edwardc


