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Abstract— Automatic sleep stage detection can be performed
using a variety of input signals from a polysomnographic (PSG)
recording. In this study, we investigate the effect of different
input signals on the performance of feature-based automatic
sleep stage classification algorithms with both a Random Forest
(RF) and Multilayer Perceptron (MLP) classifier. Combinations
of the EEG (electroencephalographic) signal and ECG (elec-
trocardiographic), EMG (electromyographic) and respiratory
signals as input are investigated as input with respect to
using single channel and multi-channel EEG as input. The
Physionet ”You Snooze, You Win” dataset is used for the
study. The RF classifier consistently outperforms our MLP
implementation in all cases and is positively affected by specific
signal combinations. The overall classification performance
using a single channel EEG is high (an accuracy, precision
and recall of 86.91 %, 89.52%, 86.91% respectively) using
RF. The results are comparable to the performance obtained
using six EEG channels as input. Adding respiratory signals
to the inputs processed by RF increases the N2 stage detection
performance with 20 %, while adding the EMG signal improves
the accuracy of the REM stage detection with 5%. Our analysis
shows that adding specific signals as input to RF improves
the accuracy of specific sleep stages and increases the overall
performance. Using a combination of EEG and respiratory
signals we achieved an accuracy of 93% for the RF classifier.

I. INTRODUCTION

Automatic sleep stage detection algorithms are helpful
in speeding up the process of analyzing PSG (polysomno-
graphic) data. When a sleep disorder is suspected, a PSG
study involving the acquisition of several physiological sig-
nals related to sleeping patterns is prescribed to the patient.
These can include EEG (electroencephalographic) channels,
electromyograms (EMG), electrocardiograms (ECG), pho-
toplethysmograms (PPG), signals for tracking respiratory
effort through belts placed on the chest and abdomen, nassal
cannulas, etc. These biomedical signals are commonly used
by medical professionals to label sleep stages and detect
anomalies during sleep.

Some combinations of signals are more frequently used
than others when detecting specific sleep stages or condi-
tions. The American Academy of Sleep Medicine (AASM)
guideline defines 5 sleep stages: Wake, N1 and N2 (light
sleep), N3 (deep sleep) and REM (Rapid Eye Movement) [1].
When labeling REM sleep, the EEG activity presented during
this stage can easily be misclassified with wakefulness. EMG
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can be used to clearly differentiate between the two states.
In conjunction with EEG, it can also help diagnose motor
related sleep disorders such as periodic limb movements or
REM sleep behavior disorder [2], [3].

As the sleep cycle progresses from light sleep (N1, N2)
into deep sleep (N3), several physiological changes occur:
the heart rate (HR) decreases, the heart rate variability (HRV)
becomes more stable and respiration becomes slower and
more regular. Non-REM sleep stages can be distinguished
using cardiac and respiratory signals. Disorders such as sleep
apnea can be more clearly identified using these types of
signals rather than using only using EEG signals [4].

Typically, clinical professionals use all signals available
to label sleep stages and provide a better diagnostic. To
perform a PSG diagnosis, targeted signals can be acquired
to reduce the discomfort and the time required for analysis.
An overview of the signals and signal subsets used for sleep
analysis is available in [5]. Automatic sleep staging can also
be performed using a subset of the PSG recordings. Sleep
stage labeling can be performed using multiple EEG chan-
nels [6], single EEG channels [7] or cardiac signals [8]. In [6]
all six EEG channels are used with several classification
methods resulting in an accuracy of 85.76%. In [7] a single
channel EEG is fed into a convolutional neural network
resulting in a mean accuracy of 82%. In [8] cardiac signals
are used with a linear discriminant analysis for classifying all
sleep stages with an overall accuracy of 69%. An overview
of the recently developed methods is available in [9].

In this context, this study proposes the following con-
tributions: (i) identify the benefits of performing automatic
sleep staging using different signal subsets from PSG record-
ings, (i) compare the performance and the final available
information with single channel EEG sleep stage detection,
(iii) study the effect of data set class balancing. An ideal
classification algorithm should provide a similar performance
across all sleep stages. If less signals can offer an equivalent
performance to using multiple input signals, ambulatory
monitoring could be a good alternative to regular in-clinic
PSG measurements. We aim to study this possibility with
the RF and MLP classifiers.

The paper is organized as follows. Section II provides
a description of the methods used for the comparison:
an overview of the automatic detection algorithms, feature
extraction, data pre-processing methods and the classifica-
tion algorithms used. Section III presents and discusses the
results. In section IV, we provide conclusive remarks and
highlight possible directions for future development.



II. METHODS

We investigated two classification methods for automatic
sleep stage label generation with different inputs: Random
Forests and Multilayer Perceptron. Prior to classification,
the same processing steps are applied. Features are extracted
from the raw signals. These are fed to the classification al-
gorithms selected (see section II-C). The obtained labels are
compared to the ground truth using the validation procedure.
We consider six raw signals and raw signal combinations
as input: (i) EEG - single frontal EEG; (ii) EEGs - six
EEG channels (for reference purposes); (iii) ECG - ECG
signal; (iv) EEG+ECG - single frontal EEG and ECG signal;
(v) EEG+EMG - single frontal EEG and EMG signal; (vi)
EEG+Resp - single frontal EEG and three respiratory signals
(from the chest,abdomen and airflow).

A. Feature Extraction

Different features are extracted from each type of raw sig-
nal taking into account their specific characteristics and the
information content required for sleep staging. All features
are computed on 30 second epochs. The time window is se-
lected according to the AASM guideline [1]. If combinations
of signals are used, the features are pooled together as input
for classification:

EEG - a total of 28 features are extracted from each
EEG channel. These include time and frequency domain
features such as mean and maximum amplitudes, kurtosis,
skew and standard deviation of the signals, statistics of the
power spectral densities and ratios between specific EEG
power bands (delta/theta, theta/alpha, delta/alpha). More de-
tails on the extracted features are presented in our previous
work [10]. When all six EEG channels are used as input,
features extracted from each EEG channel are considered.

ECG - many features have been proposed in literature
to characterize sleep using cardiac signals in the context
of automatic sleep staging [8]. The cardiac signal is most
interesting for obtaining HR and HRV features [8]. As a
subject goes from the wake state into light sleep and into
deep sleep, HR values drop significantly while the HRV
values decrease as well. We selected some of the most
commonly used features extracted from HR and HRV. These
are detailed in Table I. After detecting the R peaks of the
ECG signal [11], [12], the proposed features are computed.

EMG - muscle activity as recorded by EMG can be used
to better distinguish sleep stages that in some cases might
have similar characteristics. Less activity is present on the
EMG when the subject is asleep as compared to awake.
Distinguishing between wake and REM stages based solely
on EEG signals can be difficult, EMG is often used to
differentiate the two. During REM sleep, muscles present
atonia (lack of movement) and therefore the EMG is more
orderly compared to wakefulness. Movement on the EMG
can be detected based on features reflecting amplitude and
frequency changes [3], [2]. The proposed features are elab-
orated in Table I.

Respiration - similar to the cardiac signals, respiratory
signals (respiratory efforts measured from the chest and

TABLE I: Features extracted from ECG, EMG and Respira-
tory signals.

Signal Features

Description

ECG RR interval Mean interval between detected R
peaks of ECG signal
BPM Beats per minute
TF Mean power spectrum of HRV <0.4Hz
VLF Mean power spectrum of HRV
<0.04Hz (very low frequencies)
LF Mean power spectrum of HRV between
0.04 and 0.15Hz (low frequencies)
HF Mean power spectrum of HRV between
0.15Hz and 0.4Hz (high frequencies)
LFHF Ratio between LF and HF
RMSSD Root mean square of the HRV signal
SDNN Standard Deviation of the HRV signal
min, max, skew, Statistical measures of the HRV signal
kurtosis
entropy Spectral entropy of the HRV signal
EMG mean, max, min, Statistical measures of the EMG signal
skew, kurtosis, vari-
ance
RMS root mean square of the EMG
Entropy spectral entropy of the EMG signal
Max Freq Frequency at which the power spectrum
is maximum
max, mean PSD maximum and mean values of the PSD
Resp mean, skew, kurto-  Statistical measures for respiration

sis, variance, stan-

based signals

dard deviation

Max Freq Frequency at which the power spectrum

is maximum

max, mean PSD maximum and mean values of the PSD

NPeaks

Number of peaks detect

Statistical measures of the distance be-
tween the detected peaks

mean, stand dev,
skew of distance

abdomen and airflow) change during the different sleep
stages. While going deeper into sleep, the breathing pattern
becomes more regular and decreases its rate. This in turn
can be described with frequency and time domain features.
Typical respiration based features are extracted from all of
the three respiratory signals [4]. These are detailed in Table I.

B. Data Set Balancing

Most PSG data sets available for training and testing are
not balanced. When a data set is unbalanced, more instances
belong to one class as compared to the others. This might
impact the classification performance. PSG data is naturally
unbalanced as a normal sleep pattern contains more non-
REM sleep than REM sleep, more light sleep than deep
sleep [1].

Balancing the PSG data set for training might be beneficial
as the classifier would be presented with an equal number of
instances from each class. To overcome this issue, we chose
to select the smallest class and randomly sample instances
from the other classes such that in the balanced data set all



classes have the same size. More information on the content
of the data set used in this study is available in section III-A.

C. Classification

Many methods have been proposed in literature for the
automatic classification of sleep stages [9]. Given our focus
on the effect of the input signals, we have selected two
common representatives: a tree based approach representative
of shallow learning and a neural classifier representative of
deep learning.

Random Forests (RF) - an ensemble learning method that
provides an output as a combination of several decision
trees [13]. In our experiments, a total number of 10 decision
trees were used.

Multilayer Perceptron (MLP) - a feed forward artificial
neural network that has a minimum number of three layers:
input, output and hidden layers. The input layer contains the
features while the output layer will contain the information
for the predicted sleep stages. By increasing the number
of hidden layers a deep neural network is created [14].
The hidden layers contain several perceptrons with a tanh
activation function. Experiments were performed with 1, 3, 5
and 7 hidden layers and changing the number of perceptrons
per hidden layer. Experiments were performed with 500 and
1,000 perceptron per layer.

III. EXPERIMENTAL RESULTS
A. Data Set and Metrics

The data set used in this study is the “You Snooze, You
Win: PhysioNet/Computing in Cardiology Challenge from
2018” (MGH dataset) available on Physionet [15], [16]. The
training set is AASM annotated and it was used for the
development of this study as it provides a great wealth of
annotated data (994 subjects from the training set) [10].

The MGH dataset contains PSG recordings that include 6
EEG channels (F3M2, FAM1, C3M2, C4M1, O1M2, O2M1),
a submentalis EMG, ECG, Sa0O2 and signals monitoring
respiratory effort from the chest, abdomen and the airflow
signal. All subjects were included in the analysis. In this
work, we considered the frontal F3M?2 EEG signal, the EMG,
the ECG and the three respiratory signals (chest and abdomen
effort signals and airflow).

The proposed methods were tested using a 10-fold cross
validation experiment. The performance was assessed by
means of accuracy, precision and recall as defined in the
following:

Accuracy=(TP+TN)/(TP+TN+FP+FN) (1),
Recall =TP/(TP+FN) (2),
Precision=TP/(TP+FP) (3).

where TP - true positive, TN - true negative, FP - false
positive, FN - false negative

The normalized confusion matrix is also used for specific
sleep stage performance assessment. The evaluation protocol
is the one used in [10].
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Fig. 1: Normalized confusion matrix for RF classification
using the class balanced data set of features extracted from

the frontal EEG channel.

B. Effects of Data Balancing

The use of data set class balancing was tested on all signal
combinations and with both classifiers. An improvement
in both overall performance and individual class prediction
performance was observed in all cases. As an example,
when using the RF classifier with the features extracted
only from the frontal EEG in the unbalanced case, the
accuracy, precision and recall were of 72.96%, 79.69% and
71.82%, respectively. By balancing the dataset, the overall
performance increased to 86.91%, 89.52%, and 86.91%,
respectively which is an improvement of 13.95, 9.83 and
19.09 percentage points. For the MLP classifier using the
same input, an accuracy of 75.5% for the unbalanced data
set is obtained, while for the balance data set it increases to
82.55%.

When using an unbalanced data set with a single channel
frontal EEG as input, sleep stages N1, N2 and REM have a
lower prediction performance [10]. When using a balanced
data set, the three sleep stages have an improved prediction
performance of about 10 percentage points. Figure 1 shows
the improved performance in the corresponding normalized
confusion matrix. The balanced data set was used in our
experiments.

C. Classification Algorithms

The best RF performance was obtained with a minimum
number of samples per leaf of 10 [10]. For the MLP
classifier, the best performance was obtained when using 3
hidden layers with 500 units per layer. Table II presents the
results obtained for all input signal combinations using the
classifiers with the optimized parameters.

The RF classifier systematically outperforms the MLP
for all signal combinations used as input. The performance
obtained with a single channel EEG is comparable to that
obtained when using 6 EEG channels. The wake versus
REM sleep stage discrimination is improved when adding
the EMG signal as input for both classifiers. This is reflected
in the overall performance when using the RF classifier, but
it is not valid for the MLP classifier. When using a single
channel EEG and respiratory signals, the performance for the
RF classification is higher than for the other combinations.



This does not hold for the MLP classifier, when the reported
performance for this input combination is the lowest. The
MLP classification might be further improved by slightly
changing the network architecture. For signal combinations
that increase the number of input features, the performance
decreases. This might be a sign of overfitting.

D. Effect of Different Input Signals

Table II provides a comparison of the overall performance
for each signal combination. The classification results ob-
tained from the single channel frontal EEG are comparable
to the results obtained on all 6 EEG channels from our study
(see Table II) and from literature [6] where an accuracy of
86.91 % was reported. The RF classification performance
using a single channel EEG with feature extraction and data
set balancing reaches an accuracy, precision and recall of
approximately 86%, 89% and 87%, respectively. Adding
both the EMG and respiration signals improves the perfor-
mance (up to approximately 6 percentage points increase).
The highest accuracy of 93% is obtained when adding the the
respiration signals as input to the RF classifier. When using
the MLP classifier, the highest performance is obtained using
the EEG as input. The lowest performance was obtained
when using only the ECG signal as input. This might be
due to the combination of ECG features chosen and does
not imply that the ECG might not be useful should another
feature set e considered. When combining the ECG and EEG
signals, a small improvement is obtained.

The sleep stage prediction performance obtained when
combining a single channel EEG with other PSG signals
is presented in Figure 2 as normalized confusion matrices.
The presented results are from the RF classifier. As expected,
when adding the EMG signal the REM sleep stage classi-
fication is slightly improved (see Fig. 2b). The addition of
the respiratory signals increases the prediction abilities for
the N2 sleep stage by approximately 20 percentage points
(see Fig. 2¢). It also improves the discrimination of REM
sleep which implies respiration signals might also be a viable
alternative to using the EMG as input. The features obtained
from the ECG signal do not improve the classification in our
analysis, but have a rather negative impact on performance
(see Fig. 2a). Although the overall performance of the
automatic sleep scoring algorithm using only one channel
EEG data is sufficiently high, adding EMG and respiratory
signals provides more information for specific sleep stages
such as N2 and REM.

IV. CONCLUSIONS

In this study we investigated the effects of using different
signal combinations as input to feature based automated sleep
stage detection algorithms. A Random Forest and Multilayer
Perceptron network were used as classifiers for automated
sleep stage detection using as input a single channel EEG,
6 EEG channels and combinations of a single channel EEG
and ECG, EMG and chest, abdomen and airflow respiratory
signals. The best accuracy of 93% was obtained when adding
respiratory signals to EEG with the Random Forest classifier.

TABLE II: Comparison of performance for Automated Sleep
Stage Scoring using different input signals and the two
classifiers. A - Accuracy, P - Precision, R - Recall

Input Random Forests Multilayer Perceptron
Signals Al%] P[%] RI%] A[%] P[%] R[%]
EEG 86.89 88.80 86.91 82.55 82.56  82.54
EEGs 86.65 89.31 86.68 7393 73.67 7393
ECG 7245 8556 7245 5923  60.25  59.23
EEG+ECG 7252 8572 7250 6028  55.00 60.27
EEG+EMG 88.65 90.62 88.63 66.70 66.84  66.69
EEG+Resp 93.72 9434  93.71 5227 535 52.26
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Fig. 2: Normalized confusion matrices for the RF classifier,
using a single channel frontal EEG combined with ECG,
EMG and respiratory signals, respectively. The input data
set was balanced.

REM sleep stage detection was improved when adding the
chin EMG signal. N2 stage prediction was improved when
using the respiratory signals. The accuracy obtained using a



single channel EEG and six EEG channels was in the same
range of approximately 86%. When considering the used
performance metrics, the same information can be obtained
from a single channel frontal EEG as from the full six
channel EEG montage recommended for PSG recordings.

Data set class balancing for training purposes improved the
per class performance. The RF classifier outperformed the
implemented version of the MLP. Using different classifica-
tion models might improve the general performance and the
per class predictions specifically when using single channel
EEG as input. For future work, the MLP classifier network
can be improved by selecting a different architecture. Adding
dropout layers might prevent overfitting. Making use of
temporal information can capture the natural progression
through sleep stages and might also positively impact the
performance. The RF classifier might perform better also
due to its inherent feature relevance selection. Implementing
a method that incorporates better feature selection might also
improve class predictions.
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