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Abstract In this paper, we report on the creation of

a publicly available, common evaluation framework for

image and video visual interestingness prediction. We

propose a robust data set, the Interestingness10k, with

9,831 images and more than 4 hours of video, inter-

estigness scores determined based on more than 1M

pair-wise annotations of 800 trusted annotators, some

pre-computed multi-modal descriptors, and 192 system

output results as baselines. The data were validated ex-

tensively during the 2016-2017 MediaEval benchmark

campaigns. We provide an in-depth analysis of the cru-

cial components of visual interestingness prediction al-

gorithms by reviewing the capabilities and the evolu-

tion of the MediaEval benchmark systems, as well as

of prominent systems from the literature. We discuss

overall trends, influence of the employed features and

techniques, generalization capabilities and the reliabil-

ity of results. We also discuss the possibility of going

beyond state-of-the-art performance via an automatic,

ad-hoc system fusion, and propose a deep MLP-based

architecture that outperforms the current state-of-the-

art systems by a large margin. Finally, we provide the

most important lessons learned and insights gained.
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1 Introduction

Recent advances in automatic analysis of multimedia

information go beyond the annotation and prediction of

concrete, tangible and objective concepts, such as the

presence of specific objects or scene understanding. Mo-

tivated by the richness of computer applications where

human interaction is central, researchers now also con-

centrate on the prediction of subjective concepts, re-

lated to human behaviour and perception, such as vi-

sual memorability, Squalli-Houssaini et al. [1], induced

emotions, Mo et al. [2], or visual aesthetics, Carballal

et al. [3].

When addressing human reactions and perception

assessment of multimedia content, an important role

is played by the person himself, personal preferences,

individual personality, cultural backgrounds and many

more subjective factors. This is an additional challenge

to devising automatic machine learning algorithms, as

it requires ground truth data specifically adapted to

this human-oriented task.

In this work, we address this challenge and discuss

resources and approaches for one of the most popular

subjective concepts of visual information, namely visual

interestingness, Constantin et al. [4]. Interestingness

has been defined and studied for some time, starting

with Berlyne’s works in psychology [5], who classifies

interest as a defining factor for human motivation and

behaviour. Later, Berlyne [6,7] identifies factors that in-

duce or influence interest, including novelty, complexity,

uncertainty and conflict. The high degree of subjectiv-
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ity associated with interestingness is visible from some

of its definitions, a crucial role in determining interest-

ingness being assigned to the observer. For example,

situational interest is defined by Hidi and Anderson [8]

as “the appealing effect of an activity or learning task

on an individual”. Chamaret et al. [9] define interest-

ingness as “the quantification of the ability of an image

to induce interest in a user”.

In some psychological studies, interestingness has

been considered as an emotion, Silvia [10,11], and in-

cluded in the knowledge emotions category that is re-

lated to the comprehension process. Interest has been

shown to be a product of two appraisal structures: no-

velty-complexity (interest shown for new and complex

events) and coping potential (the ability to understand

an event). Further studies have also revealed subjective

differences between the perception of interestingness,

based on personality traits, e.g., subjects that had high

values for their openness were more influenced by the

novelty-complexity appraisal structure, McCrae [12].

In automated, computational approaches, the con-

cept of interestingness is projected in two perspectives,

Constantin et al. [4]: visual interestingness, which is re-

lated to the aforementioned definitions, and social in-

terestingness, which is related to social media concepts

such as popularity, virality, number of likes on social

platforms, shares, etc. These concepts, although they

may seem correlated, depending on the use case and

data, proved to be, in fact, weakly correlated at best,

typically negatively correlated, Hsieh et al. [13]. Items

with high impact on social networks are not necessarily

interesting from a visual perspective.

In this context, this work focuses on the concept

of visual interestingness and proposes a publicly avail-

able, common evaluation framework, for the prediction

of image and video visual interestingness. Proposed re-

sources include large annotated data (the Interesting-

ness10k data set) and evaluation protocols, as well as

an in-depth study of benchmark and state-of-the-art

approaches, with the objective of providing relevant

baselines for a complete practitioner’s guide. To disam-

biguate the information need, we adopt a real-world,

Video on Demand (VOD), use case scenario, employed

by Technicolor1. A computational system should be

capable of automatically selecting movie images/parts

which are considered to be the most interesting ones

for the underlying movie, Demarty et al. [14]. The pro-

posed resources have been validated during the 2016

and 2017 MediaEval Benchmarking Initiative for Mul-

timedia Evaluation2.

1 https://www.technicolor.com/
2 http://www.multimediaeval.org/

We strongly believe that this type of overview con-

tribution that creates useful insights into its field has a

significant impact and helps shape the research direc-

tions. We follow the best practices from the literature,

like the evolution of PASCAL Visual Object Classes

data set3 in Everingham et al. [15], ILSVRC bench-

mark4 in Russakovsky et al. [16], TRECVid5 shot bound-

ary detection track in Smeaton et al. [17], TRECVid

content-based video copy detection benchmark in Awad

et al. [18], ImageCLEF6 automatic medical annotation

data sets in Deselaers et al. [19], multimodal person

discovery in broadcast TV benchmark in Poignant et

al. [20], ImageCLEF biomedical image retrieval systems

in Kalpathy-Cramer et al. [21].

Some of the most important insights to takeaway

from our study can be summarized with the following:

(i) Interestingness entails a high degree of annotator

subjectivity; (ii) What is interesting in an image? analy-

sis of annotator data reveals some specific patterns such

as colored and aesthetic frames, and presence of people;

(iii) System performance for prediction is much lower

than for more objective tasks, such as object detection

or scene classification. Even humans, while significantly

surpassing machine performance, do not achieve per-

fect prediction; (iv) Current state-of-the-art deep neu-

ral networks, while achieving good performance, they

are not the top prediction performers; (v) What deep

neural networks learn? Grad-CAM analysis shows an

explicit focus on the main subject, but also on the area

around. The presence of people triggers activation also

around the faces; (vi) Late fusion and ensemble sys-

tems represent a good option with implicit higher per-

formance than single systems of any type.

The remainder of the article is structured as fol-

lows. Section 2 presents the state of the art and po-

sitions our contribution. Section 3 describes the pro-

posed data set, including the annotation protocol. Sec-

tion 4 presents the recommended evaluation protocol.

Section 5 presents an in-depth analysis of benchmark

and state-of-the-art systems: overall capabilities, em-

ployed descriptors, prediction methods, generalization

capabilities, and reliability analysis. Section 6 investi-

gates the performance of several state-of-the-art deep

neural networks on the proposed data. Section 7 dis-

cusses the possibility of boosting performance by build-

ing an ad-hoc system on top of existing baselines and

proposes a deep MLP-based solution. Section 8 con-

cludes the paper and discusses future perspectives.

3 http://host.robots.ox.ac.uk/pascal/VOC/
4 http://www.image-net.org/challenges/LSVRC/
5 https://trecvid.nist.gov/
6 https://www.imageclef.org/
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2 Previous work

We review the relevant literature on the resources avail-

able to benchmark and develop visual interestingness

prediction algorithms. For a comprehensive study of

computational approaches for interestingness prediction,

the reader is referred to our previous contribution, Con-

stantin et al. [4]. Interestingness data sets have been

created with the goal of predicting either image or video

interestingness. A summary is presented in Table 2.

For instance, the Scene categories data set created

by Gygli et al. [22] is built on top of the Oliva and

Torralba [23] data set. The authors use the original

2,688 images, initially selected for scene recognition,

and added binary (yes/no) interestingness annotations

via crowd-sourcing on Amazon Mechanical Turk7. On

average, each image was annotated by 11.9 subjects.

Another relevant example is the visInterest data set,

Soleymani [24]. It is composed of 1,005 images cover-

ing different topics and extracted from real-world pho-

tos from Flickr8. Annotations were also carried out via

crowd-sourcing on Amazon Mechanical Turk. Besides

interestingness, these data also come with the annota-

tion of other subjective concepts, e.g., quality, compre-

hensibility.

For videos, Jiang et al. [25] propose a data set con-

sisting of 420 YouTube9 advertisement videos extracted

from 14 different categories and 1,200 Flickr videos for

15 different categories. The average duration across all

the videos is around 53 seconds. Grabner et al. [26] cre-

ate a webcam-based data set from publicly available

webcam streams. It contains visual scenes from high-

ways, public squares, urban scenes, etc. The data set

consists of 20 different webcam sequences recorded at

1 frame/second, with 159 images each. The interesting-

ness annotations were carried out by 46 trusted annota-

tors and the interestingness score is assimilated to the

fraction of people who marked it as interesting.

Another relevant initiative is the gifInterest data set

developed by Gygli and Soleymani [27]. It addresses the

prediction of GIF media interestingness and is based on

the Video2GIF data set, Gygli et al. [28], and the Tum-

blr data set, Bakhshi et al. [29]. In total, it proposes

2,739 image sequences with an average duration of 4.25

seconds (at 11 frames/second). Annotations were com-

puted via crowd-sourcing on Amazon Mechanical Turk.

Although existing resources are definitively valuable

and address several useful use case scenarios, we pro-

pose a more comprehensive collection of resources, i.e.,

7 https://www.mturk.com/
8 https://www.flickr.com/
9 https://www.youtube.com/

both annotated data and baseline systems, which were

already validated in benchmark campaigns.

We identify the following main contributions over

the current state of the art:

– (i) We release publicly a consistent annotated data

set, i.e., Interestingness10k, composed of 9,831 im-

ages and 9,831 short videos (up to 4 hours), anno-

tated for visual interestingness by trusted annota-

tors. Apart from image and video visual interesting-

ness, the data also allow the study of the correlation

between the two. To the best of our knowledge, this

is the most complete common evaluation framework

available so far;

– (ii) We provide an in-depth analysis of the crucial

aspects of visual interestingness prediction algorithms

by investigating the capabilities and evolution of ex-

isting systems (e.g., analysis of relevant approaches

from the MediaEval benchmark and from literature,

influence of the employed features and fusion tech-

niques, influence of deep learning approaches, gen-

eralization capabilities). This is again the first com-

prehensive study covering all these core aspects. It

is a practitioners’ guide for best practice in this field

and also a strong baseline;

– (iii) We investigate the possibility of creating au-

tomatic, ad-hoc systems, based on existing base-

lines that would allow to boost state-of-the-art per-

formance. In this context, we propose a new deep

MLP-based fusion scheme that exceeds current per-

formance by a large margin.

We analyzed the importance of this particular topic

in the research community by quantifying the amount

of papers published on this subject between 2010 and
2019. Results are presented in Figure 1. The search

was conducted via Google Scholar10 using the following

keywords: “visual interestingness”, “image interesting-

ness”, “video interestingness”, “media interestingness”

and “interestingness prediction”. Results were filtered

out to remove irrelevant articles. Although not exhaus-

tive, it is a good approximation of the general trend.

Since 2016, the first year of the interestingness predic-

tion task at MediaEval, the number of research papers

published on the subject has grown substantially, and

remained high in 2019 even though the task ended. This

shows the positive impact of these data, as well as the

increased interest in this subject.

Relation to previous work. Some preliminary con-

tributions of this work have been published and read-

ers can refer to those works for more information: De-

marty et al. [14,30] short papers presenting briefly the

data, metrics and evaluation methodologies for the 2016

10 https://scholar.google.com/
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Fig. 1 Evolution of the number of published research papers
referring to visual interestingness (search made via Google
Scholar using “visual interestingness”, “image interesting-
ness”, “video interestingness”, “media interestingness” and
“interestingness prediction” as keywords).

and 2017 MediaEval benchmark campaigns; Demarty

et al. [31] book chapter presenting and analyzing the

results of the 2016 MediaEval benchmark.

Abbreviations. Throughout the article, we employ

the following abbreviations: API — application pro-

gramming interface, BN — batch normalization, BTL

— Bradley-Terry Luce, CNN — convolutional neural

networks, C3D — convolutional 3-dimensional, CSP-

RNN — circular state-passing recurrent neural network,

DNN — deep neural networks, GMM — Gaussian mix-

ture models, HMM — hidden Markov models, HoG —

histograms of oriented gradients, HMP — histogram

of motion patterns, HSV — hue-saturation-value, kNN

— k-nearest neighbours, LBP — local binary patterns,

LSTM — long short-term memory, MLP — multi-layer

perceptron, MFCC — mel-frequency cepstral coefficients,

mAP — Mean Average Precision, NMMP — neigh-

borhood minmax projections, NN — neural network,

PCA — principal component analysis, SIFT — scale in-

variant feature transform, SVM — support vector ma-

chines, SMR — supervised manifold regression, VOD

— video on demand, VSEM — visual-semantic embed-

ding model.

3 Interestingness10k data set

We present the proposed data set, its composition and

annotation, inter-annotator agreement analysis and the

pre-computed content descriptors provided with the data.

3.1 Composition

Interestingness10k11 is a large-scale collection of im-

ages and video sequences extracted from Creative Com-

11 The Interestingness10k data set is available for
download here: https://www.interdigital.com/data_sets/
interestingness-dataset.

mons12 Hollywood-like movie trailers and excerpts, that

allow redistribution. Trailers provide a high diversity of

content with a good balance between interesting scenes

and common scenes, which are typically alternating to

increase the excitement. Therefore, they are more effec-

tive for generating benchmark data. Not least, having

the data publicly available is a requirement for a use-

ful benchmark. This would not be possible with data

extracted from copyrighted movies.

The data are divided into two parts: (i) one for im-

age visual interestingness prediction which consists of

key-frames extracted from video shots13 (middle frames),

and (ii) one for video visual interestingness prediction

which consists of individual video shots. Although im-

ages and video sequences are issued from the same data,

predicting interestingness for images and videos are dif-

ferent tasks. Motion is characteristic for video content

and affects differently the visual perception compared

to a static image. Being composed this way, the data

will allow the analysis of the correlation between the

two. Each datum is also divided into a development set

(devset) intended for training the methods and a test

set (testset) for the actual evaluation. An overview of

the data is presented in Table 1.

For the 2016 data, all samples are collected from 78

movie trailers. The devset consists of 5,054 images and

5,054 videos extracted from 52 trailers. The testset con-

sists of 2,342 images and 2,342 videos extracted from

26 trailers. The 2017 data are built incrementally on

the 2016 data. The devset data are the full 2016 data

set, i.e., 7,396 images and 7,396 videos extracted from

78 trailers. The testset data consist of 2,435 images and

2,435 videos extracted from 26 trailers and 4 full movie

excerpts. We decided to include also longer segments,

e.g., the video samples extracted from the 4 movie ex-

cerpts are on average 11.4 seconds long compared to

around 1-2 seconds for the others. Interestingness10k

provides a total of 9,831 images and 9,831 short videos

extracted from 104 trailers and 4 movie excerpts.

In Table 2, we compare our data with the most rel-

evant data sets from literature (see also Section 2). For

the image data, Interestingness10k has the advantage

of providing the greatest number of images. Also, the

annotations are performed by trusted annotators. For

the video data, Interestingness10k provides the great-

est number of sequences as well. The average duration

of the video samples is slightly shorter than for the

other data but it is consistent with the task. Interesting-

ness10k is also the only data set to provide annotations

for both image and video predictions.

12 https://creativecommons.org/
13 A video shot is a sequence of images recorded continu-
ously between a camera turn on and off.
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Table 1 Interestingness10k basic statistics: devset stands for the development data, testset for the test data, #movies are
the number of movies from which the annotated samples were extracted, and avg.dur. is the average duration of the segments.
The 2016 and 2017 columns indicate the version of the data set.

Subset 2017 2016 #movies #samples avg.dur. (s) #interesting %interesting

Image
devset

devset 52 5,054 - 473 9.36
testset 26 2,342 - 241 10.29

testset 26 & 4 2192 & 243 - 261 & 55 11.91 & 22.63

Video
devset

devset 52 5,054 1.06 420 8.31
testset 26 2,342 1.05 226 9.65

testset 26 & 4 2192 & 243 2.15 & 11.4 249 & 28 11.35 & 11.52

Table 2 Overview of the most relevant interestingness data sets: avg.dur. is the average duration of the segments, trusted
annotations are carried out by human assessors familiarized with the task.

data set media type #samples avg.dur. (s) annotations
Scene Categories - Gygli et al. 2013 [22] images 2,688 - crowdsourced
visInterest - Soleymani 2015 [24] images 1,005 - crowdsourced
Interestingness10k (proposed) images 9,831 - trusted
Flickr&Youtube data set - Jiang et al. 2013 [25] videos 1,620 53 trusted
gifInterest - Gygli and Soleymani 2016 [27] gifs 2,739 4.25 crowdsourced
Webcam - Grabner et al. 2013 [26] sequences 20 159 (@1fps) trusted
Interestingness10k (proposed) videos 9,831 1.32 trusted

Initialization: assign items randomly in a matrix;
Processing:
repeat

Perform single annotation round with multiple
annotators according to the item pairs given by
the square (across rows and columns);

Compute BTL scores for the new annotations;
Re-arrange the matrix so that items are ranked
according to their BTL scores, and placed in a
spiral. This arrangement ensures that similar
items are compared row-wise and column-wise;

until convergence;

Algorithm 1: Proposed adaptive square design an-

notation approach.

3.2 Annotations

Annotations were performed manually by trusted hu-

man assessors, i.e., experts with good understanding of

the required task. Annotations are binary, i.e., either

the content is interesting or not. Given the fact that

the image visual interestingness prediction is different

than video interestingness prediction, the two annota-

tion tasks were carried out separately.

3.2.1 Annotation protocol

We employed a pair-wise comparison approach, i.e.,

the human assessors were provided with two competing

samples at a time, rather than annotating individual

items, a method well suited for gathering subjective an-

notations in similar scenarios, as presented by Salesses

et al. [32]. This provides several advantages. Firstly, it

is more reliable as the annotator is asked to do a rel-

atively easy cognitive task, i.e., simply comparing two

items. In theory, assigning an absolute rating for a sin-

gle item requires the annotator to compare to the full

set of previously seen items, or at least to keep in mind

some complicated set of decisions, Yang and Chen [33].

Secondly, for independent items, different annotators

may use different scales and the assessments are not eas-

ily comparable, Ovadia [34]. Finally, it has been shown

that pairwise comparisons are less influenced by the or-

der in which the annotations are displayed compared to

a direct rating, Yannakakis and Hallam [35]. To com-

ply with the underlying use case scenario, annotators

were instructed to select the image/video that would be

defining for making him watch the entire source movie.

The main drawback of a pair-wise comparison ap-

proach is the impossibility of exploring all possible com-

binations of two items, especially when dealing with

such a large data set. There are however several ap-

proximations possible which converge to similar results.

We started from the adaptive square design method,

Barkowsky and Callet [36], where the items are placed

in a square and only pairs on the same row or column

are compared. This reduces the number of comparisons

from n(n − 1)/2 for all pairs, to n(
√
n − 1), where n

is the number of items. The Bradley-Terry-Luce (BTL)

model [37] was used to convert the paired comparison

data to a scalar value. We modified the original adap-

tive square design setup so that comparisons were made

by many users simultaneously until all the required

pairs had been annotated. The proposed algorithm14

is depicted in Algorithm 1.

14 The web-based pair-wise annotation software tool is avail-
able here: https://github.com/mvsjober/pair-annotate.
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For the annotations, we used 5 rounds which proved

to be sufficient to achieve good convergence. The fi-

nal interestingness decision was based on sorting the

BTL values and finding a threshold value. We used a

heuristic rule to find the boundary between the inter-

esting and non-interesting items, i.e., normalizing the

BTL values for each movie separately and using the

assumption that the BTL distribution is a sum of in-

teresting and non-interesting sample distributions. For

more details about the protocol, see Demarty et al. [31].

3.2.2 Annotation statistics

The image data set was annotated by 270 annotators

(average age 25.2±9) for which 70.9% were males, and

29.1% were females. Annotators came from 17 differ-

ent countries around the world, mainly from Europe

(79.6%) and Asia (18.5%). On average, each annota-

tor annotated 1,976 different image pairs. The video

data set was annotated by 526 annotators (average age

30.3±12.5). The gender distribution was similar to the

one for the image data, with 66.7% males and 33.3%

females. Annotators were spread over 35 countries, dis-

tributed slightly different compared to the image an-

notators, namely 74.5% came from Europe, 15% from

Asia, 8.7% from America and 1.7% from the rest of

the world. On average, each annotator annotated 1,030

video pairs, which is approximately half the number of

image pairs. The reason is the significantly longer time

required to visualize the videos.

Given the high subjectivity of the task, it is inter-

esting to assess the annotators’ agreement. To do so,

there is a high diversity of metrics available, e.g., Per-

cent Agreement, Krippendorff’s alpha, Fleiss Kappa,

Randolph’s kappa, Hayes and Krippendorff [38]. De-

pending on the data type and size, their characteris-

tics, the number of raters per sample, not all metrics

are suitable and equivalent. In our case, we have a large

collection of annotations with 533,520 pair annotations

for images and 541,780 pair annotations for videos. Not

all pairs were viewed by the same annotators, but all

of them had votes from at least two different annota-

tors. Inter-rater agreement’s measures such as Fleiss’

kappa or Randolph’s kappa are particularly appropri-

ate in such configuration. Furthermore, the annotations

are not equally spread between the two categories, i.e.,

interesting and not interesting. We observed a bias to-

wards the not interesting class for both images and

videos, with only a few samples with high interesting-

ness levels. In the adopted pair-wise comparison pro-

tocol, there were no constraints adopted to attempt to

equally spread the data into the two classes.

In such cases, where raters don’t know a priori the

number of cases that should be distributed into each

category, Randolph’s kappa proved to be a good alter-

native to the fixed-marginal multirater Fleiss’ kappa,

Randolph [39]. Marginals are considered to be fixed

when raters know a priori the quantity of samples that

should be distributed into each class. In that sense,

Randolph’s kappa is seen as a free-marginal multirater

kappa, adapted to a non-symmetric distribution of the

data between classes.

The computation of Randolph’s kappa, when con-

sidering two annotators per pair, led to a value of 0.556

for the image data set and 0.519 for the video data set.

Randolph’s kappa is in the range of [−1; 1], with 1 be-

ing a perfect agreement and negative values meaning

no agreement between raters (other than what would

be expected by chance). Therefore, we reach a reason-

able agreement on both the image and the video data

sets. For the sake of comparison, we also computed the

Percent Agreement and obtained 76.9% for the image

data set and 75% for the video data set. This reconfirms

a reasonable inter-rater agreement for both data sets,

considering the high subjectivity of the interestingness

concept.

In Figures 2 and 3, we illustrate several examples of

both images and videos, annotated as interesting as well

as non-interesting. Interesting content is visibly more

colored, better centered on pleasant people, less blurred

and containing interesting actions.

3.3 Content descriptors

To address a broader community, the data come with

several pre-computed, general purpose, content descrip-

tors for visual and audio information.

Visual information. We propose the following visual

descriptors: Dense SIFT, Lowe [40], HoG, Dalal and

Triggs [41], LBP, Ojala et al. [42], GIST, Olivia and Tor-

ralba [23], Color Histogram, AlexNet layers, Krizhevsky

et al. [43], and C3D layers, Tran et al. [44]. Dense SIFT

features were computed using densely sampled frame

patches instead of point of interest detectors, with a

codebook of 300 codewords used in the quantization

process, as described in Lazebnik et al. [45]. HoG de-

scriptors were computed over densely sampled patches

and following the work of Xiao et al. [46] were concate-

nated in order to create a higher dimensional feature.

From the AlexNet model we extracted the fc7 and prob

layers, according to the work of Jiang et al. [47] and

from the C3D model the fc6 layer.

Audio information. We propose the MFCC features,

computed over 32ms windows with 50% overlap, where
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Fig. 2 Examples from Interestingnes10k image data set: images annotated as interesting are on the right, whereas non-
interesting images are on the left (source: videos 1 to 7). Images at the top have higher annotator agreement, while images at
the bottom have lower annotator agreement.
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Fig. 3 Examples from Interestingnes10k video data set: videos annotated as interesting are on the right, whereas non-
interesting videos are on the left (source: videos 1 to 7). Videos at the top have higher annotator agreement, while videos at
the bottom have lower annotator agreement. Each video is depicted with a key-frame.

cepstral vectors are concatenated with their first and

second derivatives.

Mid-level information. To account for a higher-level

description, we propose a human presence detector. Face

detection was computed via HoG and tracking was done

via the approach proposed by Danelljan et al. [48].

4 Evaluation methodology

For benchmarking image/video visual interestingness

prediction, we recommend certain metrics. These were

used during the 2016 and 2017 MediaEval benchmark.

Of course, the data are not restricted to those ones,

but they provide a solid baseline. There is also an offi-

cial split between the training data (devset) and testing

data (testset). It is presented in Table 1. This would al-

low systems to be compared under the same conditions.

The systems should train their parameters on devset

and perform the actual evaluation on the testset.

We expect the systems to predict a confidence score

corresponding to the degree of visual interestingness for

each item. The higher the score, the more interesting it

should be. Inline with this, we recommend two related

metrics: the overall mean Average Precision (mAP) and

the mean Average Precision over the 10 highest ranked

items (mAP@10). MAP is a widely used metric for

retrieval tasks, proven to be stable in such scenarios,

Buckley and Voorhees [49]. It is computed as the mean

value over the average precision scores for each source

trailer in the testset.

This metric fits the VOD use case where images/

videos should be selected to be the most interesting

for representing the underlying content. mAP@10 was

proposed to better reflect the selection of a small set
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Table 3 Number of systems analyzed (MediaEval refers to
systems submitted to the benchmark whereas state-of-the-art
refers to relevant systems from literature).

Data set MediaEval State-of-the-art
2016.Image 27 12
2016.Video 27 18
2017.Image 33 5
2017.Video 42 28

of candidate images/videos. The metrics are computed

using the standard treceval software tool15.

5 Baseline systems

We provide an in-depth analysis of various systems,

both from the MediaEval benchmark, as well as state-

of-the-art systems from literature which were evaluated

on Interestingness10k. We reference the different year

data as Y ear.Type, where Type is the modality and

Y ear the specific year, e.g., 2016.Image refers to the

2016 image prediction data. The data were presented

in Table 1. We overview a total of 192 systems, as pre-

sented in Table 3.

Systems are evaluated using the official devset-testset

split and also the official metrics, i.e., mAP for the 2016

data and mAP@10 for the 2017 data. For comparison

between different data sets, we use general mAP.

We provide an analysis of overall performance and

system evolution, employed descriptors, prediction meth-

ods, generalization capabilities and, finally, analyze the

reliability of the system ranking results. Statistical sig-

nificance of the main hypotheses are tested using the

Mann-Whitney-U test [50].

5.1 Analysis of the overall performance

We analyze the general trends and performance of exist-

ing approaches. A boxplot representation of the results

is presented in Figure 4.

The first observation is the fact that no methods

stood out as outliers, i.e., with significantly higher or

lower performance, compared to the others. There is

then an obvious trend of increasing performance from

2016 to 2017. The best mAP performance for image pre-

diction increases by 25.75%, from 0.2485 on 2016.Im-

age data, Constantin and Ionescu [51], to 0.3125 on

2017.Image data, Parekh et al. [52].

For video prediction, the improvement is similar,

namely 22.75%, from a mAP value of 0.1815 on 2016.Vi-

deo data, Almeida [53], to 0.2228 on 2017.Video data,

15 https://trec.nist.gov/trec_eval/
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2017.Video
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Fig. 4 Boxplot representation of the overall performance:
interquartile range (IQR) 50%, median values (red line), lower
and upper adjacent values calculated as Q1− 1.5× IQR and
Q3 + 1.5 × IQR respectively. For reference, the performance
of 3 human runs is represented with the red dots.

Wang et al. [54]. The median mAP for 2017.Image and

2017.Video, 0.2550 and 0.1877, respectively, both sur-

pass the maximum values recorded for 2016.Image and

2016.Video. The observation is also true when analyz-

ing only the runs that were officially submitted as part

of the MediaEval benchmark, with the image and video

prediction registering a growth of 31.63% and 15.37%,

respectively (Mann-Whitney-U p < 0.001 for images

and videos). The reason behind this could be the im-

provement of the systems, their increased specialization

for an interestingness related task, the effect of a bigger

number of samples in the training data sets and better

annotations.

Comparing the prediction of visual interestingness

for images and videos, results show that images allow to

achieve higher mAP, but also a wider spread of the re-

sults meaning more diversity, i.e., standard deviation is

0.0264 for Image.2016 data vs. 0.0120 for Video.2016

data, and 0.0476 for Image.2017 data vs. 0.0134 for

Video.2017 data.

To stress the upper limit performance, we also as-

sess the results of three human runs, obtained via the

human annotators (see the red dots in Figure 4). To

compute those, we followed the annotation protocol

described in Section 3.2.1. The best achieved results

are: for the 2016.Image data a mAP of 0.5058, for the

2016.Video data a mAP of 0.4066, for the 2017.Image

data a mAP@10 of 0.5403 and a mAP of 0.6661, and for

the 2017.Video data a mAP@10 of 0.4140 and a mAP
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of 0.4897. What is interesting to notice is that these

human assessors did not lead to 100% precision, as the

overall aggregated annotations would do. This clearly

indicates the high subjectivity of such a task and inher-

ently a variation in the perception of the data.

5.2 Analysis of the employed features

We further analyze the impact of the employed content

descriptors and fusion schemes on the performance.

5.2.1 Per feature type analysis

We identified 6 prominent modalities which are exploi-

ted, namely: visual (e.g., HoG), audio (e.g., MFCC),

motion (e.g., HMP,), deep features (e.g., AlexNet lay-

ers), conceptual (e.g., SentiBank) and text (e.g., movie

metadata). We selected 18 of the employed combina-

tions which provided the most interesting results. They

are presented in Figure 5.

Single modality features. Overall, 72% of the an-

alyzed systems (139 systems) use only one modality.

Some have achieved very good performance. For in-

stance, Constantin and Ionescu [51] achieve the best

overall performance on the 2016.Image data set, with

mAP 0.2485. The authors use a combination of stan-

dard visual features (Datta et al. [55], Li and Chen [56],

Ke et al. [57]) with early and late fusion schemes. Mo-

tion features were best overall performers on the 2016.Vi-

deo data. Almeida [53,58] achieves a mAP of 0.1815

using histograms of motion patterns [59] in different

learning-to-rank strategies, thus taking into account the

full spatio-temporal representation of the videos.

High level concepts. Conceptual features are a spe-

cial class of descriptors that represent higher level con-

cepts, positively or negatively correlated with interest-

ingness. Even though few systems have implemented

such features, only 12% (23 systems), they achieve some

of the top results. Examples are features capturing emo-

tions, e.g., SentiBank, Borth et al. [60] employed by

Xu et al. [61], features representing the visual-semantic

space, e.g., image-captioning based, Kiros et al. [62],

employed by Berson et al. [63]. The best results on

2016.Image data from the MediaEval benchmark was

achieved by Liem [64] who uses HSV histograms aug-

mented with the presence and areas of faces. It achieves

a mAP of 0.2336. On the 2017.Video data the best

mAP@10 is 0.0827, achieved by Ben-Ahmed et al. [65]

at MediaEval. The authors use genre as a predictor

for movie interestingness, developing a system that cre-

ates genre predictors based on layers extracted from

deep neural networks like VGG-16, Simonyan and Zis-

serman [66], and SoundNet, Aytar et al. [67]. The pro-

posed system uses the MovieScope data set, Sivaraman

and Somappa [68] as additional training information.

Deep features. Deep features are now the state of the

art in many classification tasks. They were also widely

used, both as unimodal features or part of multimodal,

fusion approaches, accounting for 59% of the analyzed

systems (114 systems). Examples are the use of AlexNet

fc7 and prob layers in Erdogan et al. [69], or last lay-

ers of VGG in Lam et al. [70]. Overall, several deep

feature-based systems achieved the best performance,

either individually or in multimodal combinations. The

highest mAP on 2016.Image data achieved during the

MediaEval benchmark, is 0.2336 and is obtained by

Shen et al. [71]. The authors employed fc7 layer fea-

tures from CaffeNet [72], where data are re-sized and

center cropped to preserve the aspect ratio. The au-

thors also performed a mean image subtraction for nor-

malization. Another example is the approach of Parekh

et al. [52], which achieved the best overall mAP@10

on 2017.Image data, i.e., 0.156. The authors use the

fc7 layer of AlexNet as input for their DNN ranking.

Other approaches use deep features in fusion schemes.

The best mAP@10 on 2017.Image data achieved during

the MediaEval benchmark is 0.1385. Permadi et al. [73]

employed standard visual features like LBP and HoG

in combination with AlexNet fc7 features. The best

overall result on the 2017.Video data, mAP@10 0.093,

is achieved by Wang et al. [54] fusing standard visual

features (color histogram, denseSIFT, GIST, HoG and

LBP), audio features (IS10, Eyben et al. [74]) and lay-

ers of deep networks (AlexNet, C3D and InceptionV3).

Feature aggregation. A type of feature fusion was

employed by 54% of the analyzed systems (104 sys-

tems). Early fusion was used in 41% of the cases (78 sys-

tems), while late fusion was used in 25% of the cases (48

systems). Some systems use a combination of these ap-

proaches. Dimensionality reduction schemes have been

used in 18% of the cases (34 systems). Some notable

performance is achieved including PCA, in Rayatdoost

and Soleymani [75], with the third best result on 2016.Im-

age data at MediaEval (mAP 0.1710), and NMMP and

SMR, in Liu et al. [76], with the second best mAP re-

sult in 2017.Image at MediaEval(mAP@10 0.1369). For

a detailed analysis of the impact of dimensionality re-

duction on the prediction, the reader can refer to Liu

et al. [77].

Temporal feature aggregation was also explored. Sev-

eral methods were tested for creating video level de-

scriptors from individual frame descriptors. Overall, 67

out of the total 115 systems (58%) dealing with video

interestingness use this type of feature aggregation. How-
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Fig. 5 Analysis of the employed features: Year.Type represents the year of the data (2016 or 2017) and its type (Image or
Video). Official metrics for 2016 data is mAP and for 2017 is mAP@10. For comparison, we also provide mAP for 2017. We
represent both the participating systems from MediaEval benchmark as well as state-of-the-art approaches from literature
(marked with a red circle).

Table 4 Average mAP over the analyzed systems for each feature category: visual, deep, motion, audio, text, and concepts,
and fusion scheme: no fusion, early fusion, and late fusion.

visual deep motion audio text concepts no fusion early fusion late fusion

Image
avg. mAP 0.2258 0.2297 - - 0.2053 0.2157 0.2277 0.2260 0.2416
#systems 34 53 0 0 5 11 38 35 18

Video
avg. mAP 0.1798 0.1776 0.1704 0.1746 0.1721 0.1767 0.1768 0.1731 0.1878
#systems 49 61 14 23 6 12 51 43 30

ever, most of them were traditional statistical methods,

such as average and standard deviation. For instance,

Liu et al. [76] obtains the second best mAP during Me-

diaEval for 2016.Video with a mAP of 0.1735. Median

is used in Constantin et al. [78], obtaining a mAP@10

of 0.0732 on 2017.Video data. This is the third best

run at MediaEval. There are also some interesting ap-

proaches like the use of Bag-of-Features in Almeida

and Savii [79], who achieved a mAP@10 of 0.0628 on

2017.Video data, or the use of temporal integration via

LSTM [80] architectures in Shen et al. [81], with a mAP

of 0.1706 on 2016.Video data.

5.2.2 Overall feature performance analysis

Table 4 presents an analysis of the average mAP achieved

with the six modalities presented in the previous sec-

tion. For the image data, systems that have incorpo-

rated deep features perform better on average, with an

average mAP of 0.2297, while for the video data, sys-

tems that use traditional visual features perform better,

with an average mAP of 0.1798. An interesting trend

can be observed when looking at the fusion schemes em-

ployed by these methods. Late fusion approaches tend

to perform better than others, with an average mAP of

0.2416 for the image data and of 0.1878 for the video

data. This supports the idea of employing more ad-

vanced late fusion techniques to significantly boost the

performance (see Section 7).

5.3 Analysis of the prediction methods

The next experiment is to analyze the employed tech-

niques and their capabilities. There are, of course, nu-

merous approaches that have been experimented. How-

ever, we can identify some trends. We propose an anal-

ysis at two different levels of detail, the methods be-

ing classified: (i) according to the problem formulation,

and (ii) according to the specific class of techniques.

While some of the classes defined in the following sec-

tion may not be mutually exclusive, our intention here

is not their classification but to identify the most promi-

nent approaches and understand their performance and

general trends.
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Fig. 6 Analysis of the employed methods: Year.Type represents the year of the data (2016 or 2017) and their type (Image
or Video). We plot mAP for all methods. We provide two levels of details: (i) per problem formulation, and (ii) per specific
method. We represent both the participating systems from MediaEval benchmark as well as state-of-the-art approaches from
literature (marked with a red circle).

5.3.1 Problem formulation

We identify the following main approaches: (i) classifi-

cation, (ii) regression, (iii) ranking, and (iv) hybrid, i.e.,

combining more than one approach. Results are pre-

sented in Figure 6.

Overall, more than 52% of the approaches use classi-

fication. These systems tend to achieve the highest per-

formance on the image data. For example, Constantin

et al. [78] and Shen et al. [71] achieve a mAP of 0.2485

and 0.2336, respectively, on the 2016 data. Ranking ap-

proaches account for about 31% of the employed sys-

tems. They are used by the two top runs on the 2016.Vi-

deo data, i.e., Almeida et al. [53,58] with a mAP of

0.1815. It is worth noting that ranking approaches achie-

ve overall better results in all the cases compared to the

classification (Mann-Whitney-U p < 0.005). Regression

approaches were used by 15% of the total number of an-

alyzed systems. They were used in one of the top runs

on the 2017.Image data. Permadi et al. [73] achieves a

mAP@10 of 0.1385 at MediaEval. Hybrid approaches

account for about 2% of the total number of systems.

Despite being the less popular ones, they achieved the

best overall results on the 2017.Video data, e.g., Wang

et al. [54] with a mAP@10 of 0.093.

5.3.2 Approach

Several general trends can be observed while analyzing

the methods according to their specific techniques. Of

course, different classifications can be made. We pro-

pose the following categories which are consistent with

the results: (i) Support Vector Machines, (ii) Deep Neu-

ral Networks (e.g., VSEM, Video2GIF, LSTM-ResNet,

CSP-RNN), (iii) ranking (e.g., RankNet, RankBoost),

(iv) regression (e.g., Support Vector Regressor, Logistic

Regression, Supervised Manifold Regression), (v) hy-

brid approaches combining more than one method (e.g.,

Nearest Neighbor and Support Vector Regressor, SVM

and Ranking-SVM, Siamese network and Markov De-

cision Process), (vi) Neural Networks (e.g., Multi-Layer

Perceptron), (vii) distance-based approaches (e.g., Near-

est Neighbours), (viii) ensemble learning (e.g., Random
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Forest), and (ix) statistical approaches (e.g., Markov

Decision Process). The results are presented in Figure 6.

Support Vector Machines. SVM was the most popu-

lar choice among the analyzed approaches, representing

30%. It is used by two of the top runs on the 2016.Image

data, and the top run on the 2017.Video data. For in-

stance, Shen et al. [71] built a simple yet efficient system

that uses visual features (CNN features from the last

layer of the CaffeNet) classified with SVMs. It achieves

a mAP of 0.2336 on the 2016.Image data during the Me-

diaEval competition. This score was further improved

by Constantin and Ionescu [51] using SVMs to learn

the association between various image description tech-

niques (related to subjective properties, such as aes-

thetics, style, image composition) and interestingness.

The system is boosted via a late fusion approach, out-

performing the best results from the MediaEval bench-

mark with a mAP of 0.2485. On the 2017.Video data,

the top score at MediaEval is obtained by Ben-Ahmed

et al. [65] using deep audio-visual features to gener-

ate mid-level concepts representing movies genres, i.e.,

action, drama, horror romance, and sci-fi. These genre

distributions served as the input for a binary SVM clas-

sifier achieving a mAP@10 of 0.0827.

Deep Neural Networks. DNNs represent 28% of the

number of analyzed approaches, being the second most

used approach. Surprisingly, none of the best MediaE-

val benchmark systems are using DNNs. However, there

are state-of-the-art approaches which outperform the

best results. For instance, Parekh et al. [52] provides

the best overall results on 2017.Image data, achieving

a mAP@10 of 0.156. The authors train a DNN network

that takes as input pairs of CNN representations of im-

ages, to predict which one is more interesting from the

pair. The process is carried out for all possible pairs

within each video followed by a ranking algorithm.

Ranking. Ranking approaches account for 13% of

the analyzed approaches. Almeida et al. [53] uses a set

of learning-to-rank algorithms for predicting the inter-

estingness of videos via only visual feature represen-

tations (HMP). The classification is performed with a

majority voting scheme over the prediction of 4 pair-

wise learned rankers, namely: Ranking SVM, RankNet,

RankBoost, and ListNet. It achieves the best results

in the MediaEval competition on the 2016.Video data,

i.e., mAP 0.1815.

Regression. Regression approaches account for 12%

of the analyzed systems, while also accounting for some

top runs. For instance, Permadi et al. [73] achieves the

best overall results on the 2017.Image data, a mAP@10

of 0.1385. The authors use a logistic regression trained

on an early fusion representation of various features,

i.e., Color Histogram (HSV), LBP, HoG, GIST, dens-

eSIFT, Alexnet features and contextual descriptors.

Hybrid. Hybrid approaches, combining more than

one type of methods, account for almost 6% of the total

analyzed systems. While these methods did not achieve

notable results during the MediaEval benchmark, some

of the state-of-the-art approaches provide notable re-

sults. Wang et al. [54] provide the best overall results

on 2017.Video data, with a mAP@10 of 0.093. The au-

thors investigate the use of a learning-to-rank DNN via

a Siamese network, and a reinforcement ranking based

on a Markov decision process. To boost the results, de-

scriptors are aggregated using early fusion: visual de-

scriptors (GIST, LBP, HoG, Color Histogram, dens-

eSIFT), deep features (AlexNet, InceptionV3, C3D),

and acoustic features (energy, pitch, jitter and shim-

mer). A late fusion is finally used to aggregate the de-

cisions of the two ranking models.

Neural Networks. Shallow NN-based methods are

less used and account for almost 6% of the analyzed

systems. While in general less effective than the other

approaches, one approach stood out. Berson et al. [63]

uses semantic and contextual information via CNN fea-

tures and image-captioning based features with meta-

data extracted from IMDb16. The authors investigate

different combinations of features trained via a simple

MLP network, achieving a mAP@10 of 0.1054 on the

2017.Image data.

Distance-based. Distance-based approaches account

for 4% of the total number of analyzed systems. For

instance, Liem et al [64] employs a heuristic approach

based on the occurrence of people in video shots. The

author assumption is that clear human faces should at-

tract viewers attention causing larger empathy. The

classification quantifies the average of the histogram

intersection between the HSV histograms of the de-

tected faces, the mean HSV of all frames with detected

faces within a shot, and the area of the detected faces’

bounding boxes. The scores are then sorted followed

by thresholding. It achieves a mAP of 0.2336 on the

2016.Image data and 0.1558 on the 2016.Video data.

Ensemble learning. Ensemble learning approaches

are poorly represented. We find only one approach tested

on the 2016.Image data but without any notable results.

Statistical. Similarly, statistical approaches, e.g., Mar-

kov decision based, were used by only one system on the

2017.Video data, but without any notable results.

5.3.3 Overall method performance analysis

Table 5 presents an analysis of the average mAP achieved

for the categories of methods presented in the previ-

16 https://www.imdb.com/
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Table 5 Average mAP over the analyzed systems for each category of methods: Support Vector Machines (SVM), Deep
Neural Networks (DNN), ranking, regression, hybrid, neural networks (NN), distance-based approaches (distance), ensemble
learning (ensemble), statistical approaches.

SVM DNN ranking regression hybrid NN distance ensemble statistical

Image
avg. mAP 0.2269 0.2460 0.2374 0.2242 0.1854 0.2405 0.2214 0.2011 -
#systems 27 13 6 12 2 6 3 2 0

Video
avg. mAP 0.1822 0.1799 0.1712 0.1666 0.1867 0.1848 0.1585 - 0.2021
#systems 28 39 18 10 9 5 4 0 2

ous sections. For the image data, approaches based on

DNNs and shallow NN stand out, with average mAP

scores of 0.2460 and 0.2405, respectively. This result is

particularly interesting as the best performing type of

method, DNN, has also a high number of runs. While

the most used approach is SVM, it is outperformed by

many of the other approaches. On the other hand, for

the video data, hybrid approaches and SVM-based ap-

proaches stand out as the best performers, with average

mAP scores of 0.1867 and 0.1822, respectively. Unlike

the image data, it appears that hybrid systems are the

best performing type of methods, which could be the

result of the inherently multi-modal nature of videos.

5.4 Generalization capabilities

Interestingness has been proved to be either positively

or negatively correlated to other subjective concepts,

Constantin et al. [4]. It is therefore interesting to study

whether systems are able to generalize well from other

concepts or data, and even between images and videos.

In this experiment we analyze these aspects.

5.4.1 Concept generalization

We analyze how visual interestingness prediction gener-

alizes between different concepts and, therefore, type of

data. We identified the following situations: (i) no gen-

eralization, i.e., the systems were trained solely on the

Interestingness10k data, without the use of other ex-

ternal data; (ii) pre-trained extractors, i.e., systems are

trained on data unrelated to interestingness, like ob-

ject recognition data sets, and used directly, usually as

features in a classifier, to predict interestingness; (iii)

fine-tuned systems, i.e., systems are firstly trained on

data unrelated to interestingness and then retrained on

the Interestingness10k data to predict visual interest-

ingness; (iv) correlated systems, i.e., systems are trained

on other data from positively or negatively correlated

domains, e.g., memorability, aesthetics, emotion predic-

tion, and then used to predict interestingness, either

directly or via finetuning.

Pre-trained extractors, with 88 systems (45.8%), rep-

resent the most common type of system, even more pop-

ular than systems that do not use any kind of general-

ization (42.2%). Several deep neural network architec-

tures were used by these extractors, including AlexNet,

VGG and C3D.

Fine-tuned systems were mainly employed by fine-

tuning popular deep neural networks, accounting for

17 systems in total (8.9%), 8 of them addressing im-

age interestingness and 9 of them video interestingness.

For instance, Erdogan et al. [69] achieves a mAP of

0.2125 on the 2016.Image data. The authors fine-tune

the AlexNet model. The last softmax layer is replaced

with a regression layer, using Euclidean loss. Training

is carried out for 2,000 epochs and only the weights

of the final fully connected layer are updated during

this process. Ben-Ahmed et al. [65] achieves the best

results on 2017.Video data with a mAP of 0.2094, be-

ing also the best result recorded during the MediaEval

benchmark. The authors create a genre prediction sys-

tem for video and audio information using the VGG

and SoundNet models, trained on the MovieScope data

set [68]. The final retrained system is able to infer video

interestingness starting from the genre prediction net-

work. During the training process, keyframes were used

as representatives for the entire video shot. Another

approach, developed by Vasudevan et al. [82], uses a

deep visual semantic embedding model developed and

trained on 0.5 million samples from the MSR Clickture

data set [83], used to infer semantic proximity between

text and images. This network uses a series of LSTM

layers for encoding textual information and convolu-

tional and fully connected layers for image processing.

During the finetuning process, the title of the movie

and the keyframes are embedded in the same space, and

ranking is achieved based on the distance between the

textual and image embeddings. This approach scored a

mAP of 0.1952 on the 2016.Image data.

Finally, 6 systems (3.1%), 3 for image prediction

and 3 for video prediction use correlated system ap-

proaches. For image prediction, Shen et al. [71] achieve

a mAP of 0.2315 on the 2016.Image data. The authors

create a shallow MLP-based system with one hidden

dense layer with 1,000 neurons and ReLU activation.

This system is initially trained on a data set of 0.2 mil-
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Fig. 7 Analysis of the generalization capabilities: methods
developed on the provided data (none), methods pre-trained
on unrelated data (pre-trained), methods pre-trained and
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We represent both, MediaEval benchmark systems as well
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lion images extracted with the Flick API17, based on

their Flickr social interestingness score. The data set

is evenly balanced with regards to socially interesting

and non-interesting samples. While social interesting-

ness and visual interestingness are different concepts,

they can exhibit some degree of correlation given their

subjective nature [13]. The best performing model is

trained afterwards on the 2016.Image data and some

additional resampling and upsampling steps are taken

to induce class balance.

For the upsampling strategy, interesting samples are

multiplicated, by a factor of 5 to 13 times, with the op-

timum result being achieved for an upsampling factor

of 11. This approach also represents the best result at-

tained during the MediaEval competition, with a mAP

of 0.2336. For the resampling strategy, the authors ran-

domly select samples, based on a preset probability of

interesting samples being selected. Values between 0.3

and 0.6 interesting samples are tested, and the opti-

mum result, a mAP of 0.2315 is achieved with a re-

sampling parameter of 0.6. Other approaches include

the ones proposed by Erdogan et al. [69], who retrain

the fully connected weights of the memorability model

MemNet [84] for 3,000 epochs, thus achieving a mAP re-

sult of 0.2121. For both image and video prediction, Xu

et al. [61] employed SentiBank-based systems in their

approach, trained on Flickr images [60], without fine-

tuning the systems on Interestingness10k data. For the

2016.Image data, the authors achieve a mAP of 0.229,

17 https://www.flickr.com/services/api/flickr.

interestingness.getList.html

while for the 2016.Video data the result is 0.154. Pre-

vious works have shown positive correlation between

emotional content and visual interestingness [22].

Figure 7 shows a comparison between the results ob-

tained by different generalization strategies. It is inter-

esting to notice that, for image interestingness predic-

tion, the pre-trained extractor systems are performing

significantly better than the other type of methods. The

average mAP for pre-trained systems is 0.2405, while

for the no generalization systems the average mAP is

0.2208 (Mann-Whitney-U p < 0.05). However the same

conclusion did not present statistical significance for the

video data. While the other strategies did not present

top results, an interesting experiment is conducted by

Vasudevan et al. [82]. As mentioned before, their net-

work, once re-trained on 2016.Image data achieves a

mAP value of 0.1952. However, the same deep visual

semantic embedding system trained only on the 0.5 mil-

lion text-image pairs only achieves a mAP of 0.1866,

while the addition of 7.5 million text-image pairs from

the MSR Clickture data set surprisingly further de-

creases the mAP to 0.1858. This experiment shows the

importance of finetuning on Interestingness10k data and

the performance advantage it can bring.

5.4.2 Image to video generalization

We analyze how image visual interestingness prediction

can generalize to video prediction. We target identi-

cal systems, e.g., use of the same set of features, pre-

processing, training and post-processing, that are used

for both tasks. This analysis also incorporates video

systems that use simple statistical approaches in creat-

ing a video descriptor out of image descriptors, such as

taking average or median values across the entire set of

frames and generating a single, video-wise descriptor.

10 systems fall into this category. Figure 8 presents the

achieved mAP on video prediction vs. image prediction.

The Pearson correlation coefficient is ρ = 0.546 indicat-

ing that there is correlation between the two. However,

this can be explained also by the data which is also

correlated, i.e., images are extracted from the videos.

Nevertheless, although not a statistical proof, we

don’t rule out the possibility of adapting image-to-video

prediction and vice-versa. This was also experimented

in some previous work, e.g., Liu et al. [85], where sys-

tems are adapted to both tasks.

5.4.3 Long vs. short videos

The 2017.Video data include some longer than the av-

erage videos (see Section 3.1), with an average duration

of 11.4 seconds compared to around 1-2 seconds for the
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Fig. 8 Analysis of image-video generalization capabilities:
mAP achieved on video prediction vs. mAP achieved on im-
age prediction via the same approach (blue dots). Pearson
correlation is 0.546 (depicted in red).

others. We analyze here the prediction capabilities be-

tween these different length data. Results prove that

the longer the videos, the better the prediction of the

system. The average mAP@10 on the 1-2 second videos

is 0.0562, while the average mAP@10 for the 11.4 sec-

ond videos is 0.0751.

5.5 Reliability analysis

We analyze the reliability of the MediaEval benchmark

rankings for the Interestingness10k data. The general

idea is to study how stable the rankings are by sampling

the testing data set in different ways.

Systems are ranked using an evaluation metric based

on comparing their responses to the ground truth for a

set of queries q ∈ Q. If we denote the score achieved by

system A with λQ,A, and the score received by a differ-

ent system B with λQ,B, we say that system A is better

than system B if λQ,A > λQ,B. If this ranking is reliable,

it could be replicated with another set of queries Q′, so

that λQ′,A > λQ′,B still holds, Urbano et al. [86].

Ranking stability was investigated by randomly sam-

pling equally sized pairs (Q′,Q′′) of query subsets from

all testset queries Q. Next, the system rankings based

onQ′ can be compared with those based onQ′′. Urbano

et al. [86] suggests several reliability indicators for per-

forming this comparison, and show that most of them

are highly correlated. We selected two measures for

this study, representative of two different types of mea-

sures: relative sensitivity (score-based) and Kendall’s

rank correlation (rank-based). In addition, we also cal-

culate a weighted variant of Kendall’s rank correlation.

Relative sensitivity δr is defined as the minimum dif-

ference (λQ′,A−λQ′,B)/max(λQ′,A, λQ′,B) that needs to

be observed with Q′ such that the differences with Q′′

have the same sign at least 95 % of the time. For a stable

system, relative sensitivity tends to 0, and Sanderson

et al. [87] suggest δr = 0.25 as a reasonable limit for

judging reliability.

In contrast, Kendall’s rank correlation τ considers

only the systems’ ranks and not their specific scores,

Abdi [88]. Instead, it depends only on the number of

inversions of pairs of objects that would be needed to

transform the ranking induced by Q′ to the one by Q′′.

The value of τ ranges from 1 (identical rankings) to -1

(inverse ranking). Voorhees [89] suggests τ = 0.9 as a

reasonable limit for judging the ranking reliable.

Finally, we also compute the weighted Kendall’s rank

correlation τw, Vigna [90]. Here, exchanges of highly

ranked objects are considered more influential than ex-

changes of low ranked objects. We consider that this

is well-motivated in this case as the worst systems are

performing essentially randomly, and their ranking can

thus be deemed somewhat arbitrary. We used the ad-

ditive hyperbolic weighting as suggested by Vigna [90].

The Interestingness10k testset data contains around

2,400 video shots, which are extracted from 26 videos

for 2016 and 30 for 2017. In order to have statistically

independent subsamples we opted to sample among the

set of videos, as shots from the same video cannot be

considered to be statistically independent. We have sub-

sampled in decrements of one, so that if the total num-

ber of videos is N , we have proceeded to randomly

generate pairs of N − 1 movies, N − 2, and so on. For

each subsample size we report average scores calculated

across 50 randomly generated pairs.

Figure 9 shows the reliability scores for each da-

tum and modality according to the official metric. In

all plots, the horizontal axis indicates the subsampling

percentage, while the vertical axis indicates the aver-

age reliability score. The reliability limits τ = 0.9 and

δr = 0.25 are indicated with horizontal red dotted lines.

We can observe that τ ≥ 0.9 is reached with N − 1

or N − 2 subsampling for images, but not for videos.

For videos, only the weighted variant τw barely reaches

0.9 at N−1 subsampling, indicating that video ranking

was less reliable than images. In contrast, the relative

sensitivity limit, which also takes into account the score

values, is easily reached in all cases even at lower sam-

pling sizes (at 50% sampling or even smaller). The only

exception is 2017.Video data, where the limit is reached

only at sampling 25 videos (83%). Finally, we can ob-

serve that both Kendall’s scores tend to 1 and the rela-

tive sensitivity tends to 0 as the number of queries that

are evaluated increases.

6 State-of-the-art deep neural networks

To account for current state-of-the-art deep neural net-

work capabilities, we evaluate the performance of three

recent image and video classification architectures, which
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Fig. 9 Reliability scores of the system rankings: Year.Type represents the year of the data (2016 or 2017) and its type (Image
or Video). X-axis is the subsampling percentage (sampling is performed at movie level) and y-axis is the reliability score.
Relative sensitivity scores are marked with •, Kendall’s tau with N, and weighted Kendall’s with H. The reliability limits for
the scores τ = 0.9 and δr = 0.25 are indicated with horizontal red dotted lines. For reference, at 100% subsampling, we trivially
have perfect reliability as we would compare identical subsets.

were finetuned on the Interestingness10k data. We se-

lected for the image data the ResNeXt-101-32x48d [91],

PNASNet-5 [92], and ResNet-50 [93] architectures, aug-

mented with best practices as presented in [94]; and

for the video data, the GSM-InceptionV3 En3 [95], IR-

CSN-152 [96], and R(2+1)-18 [97] architectures. The

achieved results are synthesized Table 6.

Image classification. For image classification, we have

followed the training protocol in [94]. In this context,

we have fine-tuned all of the three algorithms using the

provided weights trained on 940 million public images

with 1.5k hashtags matching with 1,000 ImageNet1K
synsets [98], fine-tuned on the ImageNet1K data set [99].

We adopt the set of good practices proposed by the

authors, namely data augmentation including resizing

the images, random horizontal shift of the center crop,

horizontal flip and color jittering, including batch nor-

malization layers, classification of the images at several

resolutions and average the classification scores. The

best results were achieved by FixResNeXt-101-32x48d,

in both 2016, and 2017 scenarios, with a mAP and

mAP@10 score of 0.2273 and 0.141, respectively.

Video classification. For video classification, we have

fine-tuned the IR-CSN-152 and R(2+1)-18 networks,

following the training protocol in [100] using the pro-

vided weights pre-trained on the IG-65M [100] data

set, and fine-tuned on the Kinetics-400 [103] data set.

We follow the good practices recommended by the au-

thors which include a random patch cropping strategy,

variable clip length, and temporal jittering. For GSM-

InceptionV3 En3 [95], we followed the training protocol

Table 6 Performance of state-of-the-art deep neural network
architectures when trained on the Interestingness10k data
(bestME stands for best method from the MediaEval bench-
mark and bestSoA for the best method from the literature
that was tested on these data).

Method
2016

(mAP)
2017

(mAP@10)

Image

bestME 0.2336 0.1385
bestSoA 0.2485 0.1560
FixResNet50 [94] 0.1906 0.1099
FixPNASNet-5 [94] 0.1981 0.1233
FixResNeXt-101-32x48d [94] 0.2273 0.1410

Video

bestME 0.1815 0.0827
bestSoA 0.1815 0.0930
IR-CSN-152 [100] 0.1577 0.0629
R(2+1)-18 [100] 0.1579 0.0644
GSM-InceptionV3-En3 [95] 0.1738 0.0821

provided by the authors including the fusion of three

variants of different clip lengths. The best results were

achieved by GSM-InceptionV3 En3, with a mAP score

of 0.1738 for the 2016 data, and a mAP@10 score of

0.0821, for the 2017 data.

Overall analysis. The analysis of the results shows

that these deep neural networks do not achieve the best

results. While in a few cases, e.g., FixResNeXt-101, the

best results from the MediaEval benchmark have been

surpassed, none of the tested networks managed to sur-

pass the current state of the art in media interesting-

ness. Given the fact that the selected networks repre-

sent the current state-of-the-art in their corresponding

domains, i.e., image and video classification tasks [16,
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Fig. 10 Grad-CAM analysis of the network interpretation of visual information in the case of images predicted as interesting:
the top row presents the original samples, the middle row presents the Grad-CAM output image describing “class-discriminative
regions” [101], and the bottom row presents the Guided Backpropagation [102] Grad-CAM describing the features that most
contributed to the class decision.

104], the intuition is that more specialised approaches

are required to cope with this highly subjective task.

To understand how deep learning algorithms inter-

pret the visual samples and thus how they attempt to

predict interestingness, we computed the Grad-CAM

maps via Grad-CAM [101] and Guided Backpropaga-

tion [102] Grad-CAM. Some relevant examples are pre-

sented in Figure 10. Results show that in many cases,

the model focuses on the main subject, but predom-

inantly more on elements adjacent to it, showing an

inclination for detecting the context that surrounds the

main subject. This is also true for human subjects, as

the Grad-CAM analysis shows network activation on

human faces, but also many times around the face. We

theorize that this concentration of useful features on

and around faces may represent a positive influence on

the final results, as faces convey emotions.

7 Super-system design

In this final experiment, we investigate the possibility

of exploiting the power of many systems to create a

state-of-the-art performing super-system. The idea is to

use an automatic, ad-hoc fusion strategy to exploit the

advantages of each individual system. We prove that

although individual systems are powerful, and declared

state-of-the-art, there is always the possibility of achiev-

ing a greater performance via fusing system outputs.

Though some of these state-of-the-art systems already

include fusion strategies, our proposed ad-hoc fusion

will incorporate the entire set of systems used during

the MediaEval competition, therefore a larger set of sys-

tem outputs. To achieve this goal, we investigate several

standard approaches such as late fusion and boosting

and, in the end, introduce a new fusion scheme based

on a deep multilayer perceptron architecture with dense

layers.

7.1 Evaluation setup

Ensembling requires typically tens of systems to be able

to boost the performance. In practice, it is basically

impossible to implement or retrieve such a number of

systems from the authors, considering also re-running

them in the very same conditions. There are also no

best practices in this respect in the literature. The only

approaches that do so use a very reduced number of in-

ducers, e.g., less than 10 [105]. We therefore adopted a

compromise that allows to use all the system runs sub-

mitted to the MediaEval benchmark, by experiment-

ing solely on the testset. We use two split scenarios: (i)

75% training and 25% testing (RSKF75 ), and (ii) 50%

training and 50% testing (RSKF50 ). Split samples are

randomized and 100 partitions are generated. The offi-

cial metrics are computed as average values over these

partitions.

Although this approach looks more disadvantageous

than training the systems on the entire devset, because

the number of training items is significantly lower, we

consider the results a good lower indicator of what

the performance of late fusion would be. The follow-

ing small experiment highlights the differences between

the two training scenarios. We re-run our systems sub-

mitted to the MediaEval 2017 Interestingness task [78]

under the new testset split conditions. As expected, re-

sults for the RSKF75 split are better than the ones for

the RSKF50 split. However, the drop in performance

is significant when compared with the original results

attained by training on the entire devset and testing

on testset. Thus, our system’s mAP@10 results [78] de-

creased from 0.0555 (original devset/testset) to 0.0295

(RSKF75) for the image data, and from 0.0732 (orig-

inal devset/testset) to 0.0314 (RSKF75) for the video

data.
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7.2 Approaches

We experiment with the following approaches: late fu-

sion, boosting and proposed MLP-based architecture,

which are presented in the next sections.

7.2.1 Late fusion

We investigate the possibility of using standard late fu-

sion techniques, Kittler et al [106]. We experiment with

producing an aggregated visual interestingness score

via the minimum (LFmin), maximum (LFmax ), mean

(LFmean), and median (LFmedian) values of all inter-

estingness scores of all the individual systems.

We also investigate a learning strategy via a weighted

mean of system outputs (LFweight), where the weights

are determined by the rank of the system in compari-

son with the other systems. Given that some systems

may negatively affect the aggregated prediction, we use

only the top–N systems, where N is empirically deter-

mined. The aggregated visual interestingness score is

determined as
∑K

i=1 wi · si, where, for each individual

sample, N is the total number of systems taken into

account, wi is the assigned weight for each system ac-

cording to its rank, and si is the interestingness score.

N is set to 2, 3, 5, 10, 20, and the number of systems.

Weights are computed as wi = 1 − i ∗ α, where α is

varied between 0.01 and 0.5.

Overall, LFweigh had the best performance. For the

RSKF50 configuration, 2017.Video data represent the

exception, where LFmean had better results, mAP@10

of 0.0872. LFweigh performed best in the following sit-

uations: on 2016.Image data, mAP of 0.2499 (using

top N = 10 systems, α = 0.08), on 2016.Video data,

mAP of 0.1915 (using top N = 10 systems, α = 0.1),

and on 2017.Image data, mAP@10 of 0.1567 (using top

N = 20 systems, α = 0.06). For the RSKF75 config-

uration, LFmean performed best on: 2016.Image data,

mAP of 0.2519 (using top N = 2 systems, α = 0.25), on

2016.Video, mAP of 0.1929 (using top N = 10 systems,

α = 0.09), on 2017.Image data, mAP@10 of 0.1532 (us-

ing top N = 10 systems, α = 0.11), and finally on

2017.Video, mAP@10 of 0.0893 (using top N = 10 sys-

tems, α = 0.08). While the use of late fusion combina-

tions created systems that outperformed the MediaE-

val best results, in some cases, e.g., on 2017.Image and

2017.Video data, there are state-of-the-art systems that

had better scores. Figure 11 presents the comparison of

the best two performing late fusion systems with the

other approaches.

7.2.2 Boosting

Boosting schemes are widely used for enhancing the

performance of weak learners by aggregating them into

a stronger classifier [107–109]. We experimented with

several consecrated strategies, namely: AdaBoost, Fre-

und and Schapire [110], and Gradient Boosting, Fried-

man [111]. We experimented with various combinations

of systems based on their individual performance, from

the worst performers to the best ones.

AdaBoost performed best under the RSKF75 con-

figuration on 2016.Image data, mAP of 0.2677 (aggre-

gating systems ranked 8 to 10), on 2017.Image data,

mAP@10 of 0.1674 (aggregating systems ranked 5 to

19), and on 2017.Video data, mAP@10 of 0.1129 (ag-

gregating systems ranked 19 to 21). Under the RSKF50

configuration, the best results are on 2016.Video data,

mAP of 0.1987 (aggregating systems ranked 8 to 19).

Gradient Boosting performed best under the RSKF50

configuration on 2016.Image data, mAP of 0.2463 (ag-

gregating systems ranked 1 to 20), on 2017.Video data,

mAP@10 of 0.0961 (aggregating systems ranked 15 and

16). Under the RSKF75 configuration, the best results

are on 2016.Video data, mAP of 0.2209 (aggregating

systems ranked 4 to 7). Overall, under the RSKF75

configuration, boosting systems surpassed both the best

MediaEval results and state-of-the-art results, while with

the RSKF50 configuration, there were better results

from the state-of-the-art. Figure 11 presents the com-

parison of the best two performing boosting systems

with the other approaches.

7.2.3 Proposed MLP architecture

We introduce a simple, yet efficient, fusion scheme that

uses a deep MLP architecture. Our approach is moti-

vated by the property of dense layers to at least weakly

discover patterns and correlations between the individ-

ual systems decisions. We aim to model the bias learned

by each system and the correlations between the biases

to perform retrieval robustly and improve the overall

performance of the aggregated system.

After experimenting with several architectures, we

determined the following configuration: 10 layers, 5 dense

layers (relu activation) with a batch normalization layer

in-between each of them (totaling 4), inferring the fi-

nal interestingness score with a single-layer linear per-

ceptron (sigmoid activation). The architecture of the

network is depicted in Figure 12.

In the training phase, the network takes as input the

interestingness prediction scores of the systems to be

aggregated, to learn complex joint decisions. All train-

able weights of the networks are optimized together by
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Fig. 11 Super-system design: baseline is a random ranking where samples are ranked randomly 5 times and mAP averaged,
bestME and bestSoA are the best performers from the MediaEval benchmark and from the literature (in particular, are
trained on the entire devset), respectively, LF stands for late fusion, boost for boosting, and MLP is the proposed Multi-Layer
Perceptron scheme. We indicate the type of dataset split for the presented results: orig indicating the original split and RSKF50
and RSKF75 indicating the two generated splits. Results presented for RSKF50 and RSKF75 are computed as average values
over 100 random partitions.
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Fig. 12 Overview of the proposed MLP-based fusion scheme:
1 input layer followed by 4 pairs of dense/batch normalization
(BN) layers, 1 dense layer, and 1 single-layer linear perceptron
used for predicting the final interestingness score.

applying a stochastic gradient descent using the Adam

approach in Kingma and Ba [112], with the follow-

ing parameters: lr = 0.001, β1 = 0.9, β2 = 0.999,

ε = 1e − 08. The loss function is set to the standard

binary cross-entropy. The network was trained for 200
epochs with a batch size of 64. To simulate the bench-

mark scenario, we optimize the network according to

accuracy and test it with the official benchmark met-

rics, while creating splits on the testset in both RSKF50

and RSKF75 configurations. Given a new set of im-

ages/videos, the network treats the input systems as

untrained raters to model the common visual interest-

ingness level shared between them.

We analyze the results obtained with the investi-

gated and proposed MLP-based system and compare

them with the best systems from the MediaEval bench-

mark and from literature. Results are summarized in

Figure 11. Overall, clearly, the aggregated systems pro-

vide better results than the best individual systems.

This is more or less expected given the fact that they ex-

ploit the advantages of several different systems. How-

ever, the proposed MLP-based learning strategy allows

for a significant boost in performance. On 2016.Image

and 2016.Video data, it improves the best results from

a mAP of 0.2485 to 0.3459, and from 0.1815 to 0.2985,

respectively. On 2017.Image and 2017.Video data, it

improves the best results from a mAP@10 of 0.156 to

0.2646, and from 0.093 to 0.3202.

The improvement is dependent on the amount of

training data used for the MLP, the top results being

obtained for the RSKF75 configuration. Nevertheless,

good improvement is achieved in the RSKF50 configu-

ration as well.

Limitations. To understand the limitations of our

approach, we empirically analyzed the results. We dis-

cuss here some of the common misclassification cases

to understand the limitations of our approach. For cer-

tain types of visual samples, the inducers that we use as

input into our fusion system display a correlated, posi-

tive or negative bias and the late fusion approach is not

able to suppress this bias. Figure 13 illustrates some of

the typical failure cases, i.e., false negative and false

positive examples. For the false negative examples, we

observe a number of darker interesting images that are

incorrectly classified as non-interesting, with their in-

terestingness score often being lower than 0.1. This may

be the result of inducer algorithms not having enough

visual information to correctly score these particular

samples. For the false positive examples, some outdoor

non-interesting images (compared to their class rep-

resentatives), usually containing groups of people, are

assigned a high interestingness score, typically greater

than 0.5. This may represent an indication that the in-

ducer algorithms tend to pay more attention to visual

samples that contain people and therefore present a bias

for those particular cases.

8 Conclusions and open questions

The prediction of visual interestingness is a research

topic of increasing importance in the multimedia com-
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Fig. 13 Failure case examples: top row presents false nega-
tives (FN), and bottom row presents false positives (FP).

munity, with practical applications in advertising, social

media, education, media recommendation and many

more. In this work, we introduced a publicly available,

common evaluation framework for image and video vi-

sual interestingness prediction. It consists of a robust

data set, with 9,831 images and more than 4 hours of

video, and interestingness scores determined from over

1M pair-wise annotations of 800 trusted annotators.

To account for baseline systems, we provide an in-

depth analysis of the crucial components of visual inter-

estingness prediction by reviewing the capabilities and

the evolution of 192 validated systems (129 from the

MediaEval benchmark and 63 state-of-the-art systems

from the literature). We analyze overall capabilities, in-

fluence of the employed features and techniques, and

generalization capabilities. For the 129 ranked systems

of the MediaEval benchmark, computed relative sensi-

tivity, Kendall’s rank correlation, and weighted Kendall’s

rank show good reliability of the results. We also discuss

the possibility of going beyond state-of-the-art perfor-

mance via an automatic, ad-hoc system fusion, and pro-

pose a deep MLP-based architecture that outperforms

the state-of-the-art systems by a large margin.
We summarize below the most important lessons

learned and insights gained, as well as identify the re-

maining open questions and perspectives.

8.1 What are the current capabilities?

Overall system performance. Over the analyzed sys-

tems, without taking into account our system fusion ex-

periments, the highest precision for image visual inter-

estingness prediction is obtained via a learning-to-rank

DNN using both deep features and a deep ranking ap-

proach, Parekh et al. [52], mAP of 0.3125. For video, the

highest precision is achieved via a late fusion between a

learning-to-rank Siamese network and a reinforcement

ranking based on a Markov decision process, using both

visual and audio descriptors, Wang et al [54], mAP

of 0.2228. Globally speaking, results are not that high

compared to other classification and regression tasks,

and are similar to the ones achieved in early object

classification, e.g., see early TRECVid campaigns. Nat-

urally, video prediction is more challenging than image

prediction, as results show. Data, annotations and tech-

niques should still adapt and come with new improve-

ments to address this subjective task. Nevertheless, one

should notice an ascending trend, as performance sig-

nificantly increased over the years, e.g., in 2016 best

mAP is 0.2336 for images, Liem [64], and 0.1815 for

videos, Alemida [53]; in 2017 it reaches 0.3075 for im-

ages, Permadi et al. [73], and 0.2094 for videos, Ben-

Ahmed et al. [65]; and in 2018 0.3125 for images, Parekh

et al. [52], and 0.2228 for videos, Wang et al. [54]. There-

fore, progress is continuously made.

Content representation and methods. It is interest-

ing to see the rich diversity of approaches, from data

representation to the prediction methods. The most

popular content description categories are unimodal rep-

resentations, accounting for 72% of the analyzed meth-

ods, followed by deep features (employed alone or as

part of multimodal and fusion systems) with 59%. The

most popular methods are SVMs used as classifiers,

accounting for 30% of the analyzed methods, followed

by DNNs with 28%, and ranking techniques with 13%.

The best performing system is, of course, a combination

of the two, i.e., description scheme and prediction ap-

proach. Some of the image prediction best systems are

proposed by Parekh et al. [52]. They use a unimodal ap-

proach via AlexNet fc7 layer features and a learning-to-

rank DNN, mAP of 0.3125. For video, the best systems

are the approaches of Wang et al. [54]. They use, either

LBP-based features alone, or early fusion of deep fea-

tures extracted from InceptionV3, AlexNet and C3D,

and traditional visual and audio features, with Siamese

networks, achieving a mAP from 0.2131 to 0.2228. We

would like to also highlight the best performing SVMs

for images, i.e., Permadi et al. [73], via a polynomial

kernel SVM, mAP of 0.3052, and for video, Ben-Ahmed

et al. [65], via a linear kernel SVM, mAP of 0.2122.

The best performing ranking approaches for images are:

Almeida and Savii [79], via RankBoost, mAP of 0.271,

and for video, Almeida and Savii [79], via rankSVM,

mAP of 0.1877. It is worth noting that, depending on

the data, state-of-the-art results are not necessarily ob-

tained using deep learning, although is predominant.

Generalization capabilities. Annotated data is scarce

to fill in the requirements of current deep neural net-

works. Regardless of the efforts of releasing more and

more annotated data, it is not a sustainable action

in the mid term. Systems have to find alternate so-

lutions for training the algorithms. Unsupervised tech-

niques, although very appealing, are still too incipient

for this type of subjective tasks. A viable immediate

alternative is to borrow data from adjacent domains
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and use transfer learning techniques. We noticed an en-

couraging trend in this direction. 45% of the analyzed

systems used at least a pre-trained extraction general-

ization scheme, i.e., systems are trained on data un-

related to interestingness, like object recognition data

sets, and used directly, usually as features in a classifier,

to predict interestingness. These systems were the over-

all state-of-the-art performers. 9% of the systems went

further, and use fine-tuning approaches, i.e., systems

are firstly trained on data unrelated to interestingness

and then retrained on the Interestingness10k data. For

image prediction, Erdogan et al. [69] obtains the best

performance via a fine-tuned AlexNet network, with a

mAP of 0.2125. For video prediction, Ben-Ahmed et

al. [65] obtains the best performance via a video genre

classification system, with a mAP of 0.2094. Signifi-

cantly less, 3% represent correlated approaches, via sys-

tems trained on external data, from correlated domains,

e.g., memorability, aesthetics, which are used to predict

interestingness. For image prediction the best approach

uses a social interestingness prediction system trained

on Flickr data, Shen et al. [71], mAP of 0.2336. For

video prediction, Xu et al. [61] use SentiBank features,

based on emotional content, achieving a mAP of 0.154.

Ad-hoc fusion. Another important observation is the

fact that regardless how good a system is, the fusion

of the results from several systems, even with individ-

ual average performance, proves to increase the perfor-

mance. After experimenting with several fusion tech-

niques, like standard late fusion of system scores, boost-

ing techniques that use weak learners and a proposed,

deep MLP-based system fusion, we were able to boost

performance almost in every situation. The proposed

MLP system achieves a maximum improvement of 105%

on image prediction over state-of-the-art results, im-

proving mAP from 0.156 to 0.3202, and of 184% on

video prediction, improving mAP from 0.093 to 0.2646.

The inherent disadvantage is the significantly higher

computational complexity of the aggregated system.

However, good performance was obtained by fusing few

systems, an order of ten, e.g., 30-40. With current hard-

ware acceleration and parallel computing, this is a fea-

sible alternative.

Recommendations to system performance. During

our analysis, some approaches stood out when com-

pared with the others. For instance, when analyzing

modalities, deep and traditional visual features show

promising results. However, a more obvious outlier is

represented by late fusion systems. On average, the per-

formance of such systems was better, both for image

and for video data (average mAP over the analyzed

systems of 0.2416 and 0.1878, respectively). This obser-

vation is enforced by the good performance of hybrid

classifiers on video data, that use more than one type

of classifier (as presented in Section 5.3.2) but also by

the top performance of our proposed late fusion MLP

system. The intuition is that this may be an effect of

the inherent subjective and multi-modal aspects of in-

terestingness. Furthermore, while deep learning-based

systems do not necessarily represent the state-of-the-

art performers, they do present some interesting re-

sults. For instance, when analyzing the average perfor-

mance of the method categories, deep neural networks

achieved the highest average score for image data. Re-

garding the performance of modern DNN approaches,

tested in Section 6, while these methods do not out-

perform the state of the art, some of these networks,

such as GSM-InceptionV3-En3 [95] and FixResNeXt-

101-32x48d [94], achieve very high scores. Finally, some

good training practices are studied in Sections 5.3.2

and 5.4.1. For instance, when extracting features from a

deep semantic embedding model, Vasudevan et al. [82],

achieves better results when finetuning the semantic

model with Interestingness10k data, as opposed to di-

rectly extracting the embeddings. Other good practices

involve using external data from correlated domains like

social interestingness and emotional content. This type

of data augmentation, paired with data upsampling on

Interestingness10k images contributed, for example, to

the best mAP score on 2016.Image data achieved dur-

ing the MediaEval competition [71].

8.2 What are the open questions remaining?

System performance. Although a great deal of meth-

ods were experimented with various feature representa-

tions, fusion techniques and transfer learning, top per-

formance is just around a mAP of 0.31% and 0.22%, for

image and video prediction, respectively. Current per-

formance on video prediction is significantly lower than

for images. This is still incipient and requires significant

improvements. At annotations level, a lead is to deepen

the understanding of the concept of interestingness and

visual information by exploring more related subjective

concepts. Psychological user studies revealed many con-

cepts related to interestingness that have great poten-

tial in improving its understanding, e.g., novelty, coping

potential, complexity, comprehensibility. Interestingness

prediction is a multifaceted problem and should be ap-

proached from a more interconnected perspective. For a

comprehensive analysis of the correlation between inter-

estingness and other concepts, from the psychological,

experimental and computer vision points of view, we re-

fer the reader to Constantin et al. [4]. At the methods

level, temporal information remains largely unexplored
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for video prediction. Therefore, a future lead is to aug-

ment prediction models using temporal-based models,

whether they are based on new DNN architectures or

on temporal aggregation of features, for better encod-

ing of video information. Another lead is to explore the

attention mechanism in DNN architectures, so as to fo-

cus the interestingness prediction on certain regions of

the image and video. A small region in the image may

raise great interest to the viewer, rather than the whole

image itself.

Ground truth data. Another open challenge is the

generation of meaningful training data. Deep learning

models proved again to be state-of-the-art performers,

therefore, there is the need of more annotated data.

Given the subjectivity of the task, the annotation is

not as straightforward as for example, for object anno-

tation. Everybody understands what a chair or a tree

looks like, but what is interesting is not the same for ev-

erybody. This is clearly visible in the Interestingness10k

annotations. Although we used expert annotators, i.e.,

human assessors that were given thorough guidance on

the task and scientific problem, the annotator agree-

ment was average to good, with a kappa value of 0.556

and 0.519, for images and videos, respectively. The an-

notation mechanism, e.g., pair-wise comparisons, user

studies, especially for videos, should be more investi-

gated and, again, perhaps explored in correlation with

other subjective properties.

Unsupervised learning. Unsupervised generation of

data has currently proved a feasible task for many clas-

sification systems. Significant progress has been made

via auto-encoders and generative adversarial networks

(GAN). However, it was still not explored for the gener-

ation of images according to their perception. The clos-

est experiments are for generating human faces with

different emotions. This would be a pioneering direc-

tion to explore, i.e., training GANs to automatically

generate data with different levels of interestingness.
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