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ABSTRACT

In this paper we approach the problematic of video temporal segmentation. We propose an intensity-

based dissolve detection approach that is able to perform on animated video contents. It uses

the hypothesis that during a dissolve, the amount of fading-out and fading-in pixels should be

significant compared to other visual transitions. We use this information as a visual discontinuity

function. Instead of just applying a global threshold to filter these values, as most of the existing

approaches do, we use a twin-thresholding approach and the shape analysis of the discontinuity

measure. This allows us to reduce false detections caused by steep intensity fluctuations, as well as

to retrieve dissolves caught up in other visual transitions (e.g. caused by movement, color effects,

etc.). Experimental tests conducted on more than 452 dissolve transitions show that whether classic

approaches tend to fail, the proposed method is able to provide good performance achieving average

precision and recall ratios above 94% and 79.6%, respectively.

Keywords: dissolve detection, video gradual transitions, animated movies.
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1 Introduction

Most of the existing video analysis techniques rely on temporal segmentation as a first processing

step, because it provides a basic understanding of the movie temporal structure. At its highest

level of granularity, temporal segmentation means parsing the video into its basic temporal units

or video shots. A shot is defined as a continuous sequence of frames recorded between a camera

switch on and off. In order to constitute the final video (usually denoted the final cut), in the

editing phase video shots are linked together by means of video transitions. From this perspective,

temporal segmentation roughly means detecting the video transitions that make the connection

between consecutive shots.

There are two categories of video transitions: sharp and gradual. The most frequent are the

sharp transitions, or cuts. A cut is a direct concatenation of two consecutive shots and produces an

important visual discontinuity in the visual flow. Depending on video genre, 30 minutes of video

may account for up to 300 cuts [8]. On the other hand, we have the gradual transitions, such as

fades, dissolves, mattes, wipes, etc. [7]. Gradual transitions are short-in-time visual effects. Their

occurrence frequency in the sequence is more reduced, being at least one order measure less than

for the cuts. From the gradual transitions, the most commonly used within entertainment videos

are the fades and dissolves. Fades are a gradual emerging of a certain image from a constant image,

typically black (i.e. a fade-in sequence) or vice-versa, the gradual disappearance of an image into

a black frame (i.e. a fade-out sequence). Dissolves are closely related to fades (at some level they

can be perceived as the superposition of a fade-out with a fade-in transition) and involve a gradual

transition at pixel-intensity level of a certain image into another (several examples are depicted in

Figure 7) [18].

Compared to cuts, for which most of the actual detection techniques are highly accurate and

common detection ratios are above 95% (see early TRECVid campaign [17]), gradual transitions

are much difficult to detect. This is mainly due to the highly complex content transformations

involved.
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Dissolve detection is one of the still open issues, current detection ratios being in average situated

around 80%. Dissolves are much more complex transitions, even compared to fades, due to many

constraints:

• are hard to be temporally or spatially separated,

• most of the specific parameters retrieved at image level have similar time evolution as some

camera/object movements,

• may undergo many variations (there are cross-dissolves, additive-dissolves),

• may involve similar color distributions or spatial layouts of the start and end image, etc.

The existing dissolve detection techniques can be grouped around several main directions,

namely: pixel intensity-based, feature-based, transformed-based and other approaches.

As for cut or fade detection, pixel intensity-based methods provide in general the best invariance

to image fluctuations and noise, providing some of the most accurate results. For instance, an

approach is to use image differences, e.g. [23] inspired by cut detection methods (also one of the first

approaches) uses a twin-thresholding of the distance between intensities of consecutive frames. For

a gradual transition, accumulated should be greater than a certain threshold while for consecutive

frames should stay underneath a second threshold (inferior to the first one). This approach address

however gradual transitions in general. A similar approach is the one proposed in [12] that uses

instead of frame differences the Accumulation of Histogram Differences (AHD) and support points.

Authors report better performance compared to the classic twin-thresholding approach.

Another approach is to use the mathematical definition of a dissolve, i.e. a dissolve sequence is a

linear combination of the two shot intensities via two monotonic linear functions, one monotonically

increasing (i.e. a fade-out) and one monotonically decreasing (i.e. a fade-in) [14]. A dissolve is

therefore the superposition of a fade-out and a fade-in sequence and the mean and variance of pixel

intensities should have a linear and quadratic behavior respectively (method details are presented

3



in the next section). For instance [20] uses the assumption that the first order derivative of pixel

variance should monotonically increasing from a negative value to a positive one.

Other approaches rely on the optical effect produced with dissolves, i.e. the two fading sequences,

e.g. [19] detects the amount of pixels whose intensity is either monotonously increasing or decreasing

in an certain observation window (the minimum size of a dissolve). Dissolves are detected if this

measure is higher than a certain threshold which is determined on a statistically basis (the method

is detailed in Section 2). A more recent approach is reported in [24] where the normalized variance

auto-focus function is employed to detect dissolve candidates as ”high-low-high” patterns, i.e., a

monotone decreasing to a local minimum followed by a monotone increasing to a normal value.

Detection is performed using simple thresholding followed by a refinement using Support Vector

Machine classification.

In what concerns feature-based detection approaches, most of the existing approaches relay mainly

on contour/edge information, being highly vulnerable to object/camera movement. They use the

assumption that during a dissolve, object contours from the start image disappear progressively

while the contours from the final image appear. For instance, [22] defines an edge change ratio

(ECR) using the number of edge pixels which disappear from the current image and the number

of edge pixels which appear in the next analyzed frame (see Section 2), or [13] which proposes

an edge-based contrast measure (EC) emphasizing contour points contrasting the relation between

weak contour points and the significant ones. Currently, other more complex approaches have been

developed, e.g. [21] uses the trajectories of SURF key points (Speeded Up Robust Features) and

dissolves are detected by analyzing the curve of the proportion of sub-trajectories with monotonous

variation through each frame.

Transformed-based approaches are performing the detection on a transformed domain like the

DCT (Discrete Cosinus Transform) or FFT (Fast Fourier Transform). For instance, in [3] a dissolve

is detected whether the amount of pixel blocks showing important difference of DCT coefficients

and the degree of randomness of motion vectors are above a certain threshold, or [2] which enhances
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the conventional solution whereby energy histograms of the DC coefficients are used to compute

the distance between consecutive frames, by amplifying transitions through the attenuation of low-

pass-filtered frame distances with two sliding windows. Their main advantage is given by real-time

performance capabilities, as frame reconstruction is no longer needed. However, given the current

available computational power, this advantage tends to more and more accessible to the regular

techniques as well.

Finally, other approaches attempt to exploit some other sources of information or more uncon-

ventional strategies. For instance, in [4] the structure of the video sequence is modeled through the

states of a Hidden Markov Network where arcs correspond to allowable progressions of states, [15]

uses Visual Rhythm Spectrum (i.e. a spatio-temporal slice model of the sequence) or [6] which uses

type-2 fuzzy logic (fuzzy histograms and fuzzy co-occurrence matrix). In general methods from

this category are less specialized, addressing the detection either from the generic point of view, or

targeting several gradual transitions (not only the dissolves).

The remainder of the paper is organized as follows. In Section 2 we detail some of the most

relevant approaches used to model the discontinuity produced by dissolves, present some practical

implementations and situate our work accordingly. Section 3 describes the proposed approach.

Section 4 discusses the experimental results while Section 5 concludes the paper.

2 Previous work

In this section we discuss some of the most relevant hypothesis used in the literature to model the

discontinuity produced by dissolves in the video flow. Several practical implementations are also

presented.

One of the most popular intensity-based dissolve model is funded on the mathematical definition

of a dissolve. If S1(x, y, t) and S2(x, y, t) denote the intensities of two different shot sequences (where

(x, y) are the spatial coordinates and t the temporal dimension), then the dissolve sequence D(x, y, t)
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of duration T may be expresses as [14]:

D(x, y, t) = f1(t) · S1(x, y, t) + f2(t) · S2(x, y, t) (1)

where t = 0, ..., T and f1(), f2() are two monotonic functions defined as:

f1(t) = 1−
t

T
, f2(t) =

t

T
(2)

with 0 ≤ t ≤ T . For a given t, we may compute the variance of pixel intensities [14] which leads to:

σ2{D(x, y, t)} =
(

1−
t

T

)2

· σ2{S1(x, y)}+
(

t

T

)2

· σ2{S2(x, y)} (3)

where S1() and S2() are independent, and further, after developing parenthesis, we obtain the

following relation:

σ2{D(x, y, t)} = c · (t− a)2 − b (4)

where a, b and c are time independent constants:

a =
T · σ2{S1(x, y)}

σ2{S1(x, y)}+ σ2{S2(x, y)}
(5)

b =
σ2{S1(x, y)} · σ

2{S2(x, y)}

σ2{S1(x, y)}+ σ2{S2(x, y)}
(6)

c =
σ2{S1(x, y)}+ σ2{S2(x, y)}

T 2
(7)

Therefore, one may observe that during a dissolve, the variance of pixel intensities should have a

parabolic behavior with respect to time. This can be emphasized by employing first and second

order derivatives. For example, a practical implementation of this hypothesis is to be found in [20].

In this case, dissolves are detected whenever the first order derivative of pixel variance monotonically

increases from a negative value to a positive one. Tested on two hours of video footage the method

reported a recall and precision of 82.2% and 75.1%, respectively.

Another relevant approach is to model the optical effect produced by a dissolve sequence as

the superposition of a fade-out with a fade-in sequence. Starting from eq. 1 we may assess the

difference between two dissolve frames as:

D(x, y, t+ 1)−D(x, y, t) =
1

T
[S1(x, y)− S2(x, y)] =











C1 > 0 S1(x, y) > S2(x, y)
C2 < 0 S1(x, y) < S2(x, y)
0 S1(x, y) = S2(x, y)

(8)
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where D() is the dissolve sequence, 0 ≤ t ≤ T with T the dissolve duration and C1 and C2 are

two constants [19]. Therefore, during a dissolve, pixel intensity change is always defined as either

ascending or descending. An example of using this model is the approach proposed in [19]. It

measures the amount of fading-in and fading-out pixels in a certain observation window. In order

to model the behavior of a dissolve, pixels are to be classified into three categories, namely: pixels

whose intensity is either monotonously increasing or decreasing (Nprop), pixels whose intensity

remains unchanged (Nfs) and finally, pixels whose intensity changes are not according to eq. 8

(Nopp, most of the pixels undergoing motion are part of this category). Further, these changes are

captured with a global function, thus:

Sw
N =

{

Nprop

Nfs+Nopp
N > τ

0 otherwise
(9)

where N is the number of pixels whose intensities changed within the observation window w and

τ is a certain threshold. A dissolve is detected whether Sw
N is greater that a second threshold,

statistically determined using a binomial distribution model. This method reported a maximum

recall and precision of 85% and 82%, respectively.

Other approaches use feature-level information, e.g., contour/edge information, feature points,

to model the dissolve. This approach is motivated by the fact that in practice, during a dissolve,

scene objects are to gradually disapear/apear. The basic idea remains the same but is applied to

edges. During a dissolve new intensity edges should appear far from the locations of old edges,

while old edges disappear far from the location of new edges. One of the first approaches using

this model is the one in [22] that proposes to measure the visual discontinuity with the following

measure denoted Edge Change Ratio:

ρt,t+1 = max{ρin, ρout} (10)

where ρin denotes the fraction of edge pixels in the frame at the moment t + 1 which are entering

the scene, while ρout is the fraction of edge pixels in the frame at the moment t which are exiting

the scene. At the beginning of a dissolve, ρout should be predominant while at the end ρin. The
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highest peak is obtained for the dissolve middle frame. Tested on several sequences the method

achieved very good detection, however precision and recall have not been reported.

Regardless the features used, all of the existing dissolve detection approaches (see also Section

1) are inherently designed and validated on natural movies because of their high popularity.

In this paper we address a particular application domain, namely the artistic animated movies [1],

and propose a dissolve detection method which is able to cope with the constraints of this domain [9].

The artistic animated movie industry witnessed a spectacular development and gain in popular-

ity in the last years, becoming a major entertainment industry. There are a lot of international

festivals promoting this genre, like Canada - Ottawa International Animation Festival, Portugal -

CINANIMA International Animation Film Festival, France - Annecy International Animated Film

Festival [1] (e.g. it involves more than 31,000 movie titles, 22,924 companies and 60,879 profession-

als, being the equivalent of the Cannes International Film Festival in the animated industry). Due

to their distinctive creation process and contents, animated videos raise new processing challenges.

Any un-natural (artificial generated) visual contents falls basically in this category of video footage.

Artistic animated movies are very different from natural movies and even cartoons in many

respects [10]. First, they are created using a large variety of animation techniques: paper drawing,

salt animation, 3D synthesis, puppet animation, etc. Therefore, contrary to natural movies, many

animated movies are created frame by frame thus affecting the continuity of the visual flow. In

the dissolve context, this may rend inefficient the general assumptions on the gradual or parabolic

evolution of some intensity-based parameters, like the variance [20]. Also this affects the motion

content which is usually discontinuous (e.g. stop motion). Each animated movie has a specific color

palette, as colors are selected and mixed by the artists to express particular feelings, therefore there

is a strong color similarity between shots. We mainly deal with fiction or highly abstract movies, rich

in visual effects. Usually, events don’t follow any physical rules: characters appear/dissapear, they

can take any shape, color, etc. Contour/edge information changes often from one image to another

and exiting/entering contour pixels may not necessarily be related to dissolve transitions [22]. These
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particularities are synthesized in Figure 1. Overall, we deal with very complex visual contents and

particularly, dissolve transitions usually show atypical patterns (see the examples in Figure 7).

animation techniques

specific color palettes

visual effects

very abstract contents

Figure 1: Specificity of the animated movie domain. First figure depicts examples of various
animation techniques (from left to right and top to bottom): paper drawing, object animation, 3D
synthesis, glass painting, plasticine modeling and color salts. Movies from Annecy International
Animated Film Festival [1].

The interest in dissolve detection in animated movies has a double motivation. First, similar to

natural movies, there is the analysis purpose, e.g. understanding the temporal structure. Second,

as we deal with artistic contents, there is a content description purpose. With animated movies

gradual transitions have a well defined meaning in the movie’s narration. High amounts of gradual

transitions are related to a specific movie contents, for instance many artistic animated movies

basically replace cuts with gradual transitions, which confers mystery to the movie (see movies

”Paradise”, ”Cœur de Secours”, ”Le Moine et le Poisson” [1] [11]).

To address these constraints, we propose a straightforward efficient dissolve detection that ex-

ploits the hypothesis advanced in [19] (see Section 2) according to which the pixel intensity in terms

of amount of fading-out and fading-in pixels should be high during dissolves. The main novelty

of our method is in the way we carry out the localization of the dissolves within the discontinuity

function. Instead of just applying a global threshold, as most of the existing approaches do, we use
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a twin-thresholding approach and the shape analysis of the signal. This approach allows to reduce

false detections caused by steep intensity fluctuations (due to noise, movement, visual effects, etc.),

as well as to retrieve dissolves caught up in other visual effects or scene movements (very frequent

in animated movies). Additionally, to overcome the restraint visual continuity of the animated

movies, fading-out and fading-in pixels are selected at intensity level from a reduced time window

of only several frames. This work is an extension of the paper presented in [9].

3 Dissolve detection

The diagram of the proposed dissolve detection is presented in Figure 2. For the detection, we use

only pixel intensity information which is obtained with the Y luminance component after converting

initial RGB images to Y CbCr color space [16]. Additionally, to reduce computational load, images

are down-sampled to a lower resolution (e.g. around 120 × 90 pixels). Tests proved that whether

the detection results are similar with the ones obtained using higher resolution frames, the gain in

computational time is significant (see Section 4).

time

image sub-sampling and graylevel conversion

...

...

0 1 N-3

determine:
FadeInPixels

FadeOutPixels
0

0

determine:
FadeInPixels

FadeOutPixels
1

1

determine:
FadeInPixels

FadeOutPixels
N-3

N-3

1 2 3

...compute:
FP0

compute:
FP1

compute:
FPN-3

FP (Fading Pixels)

tCT

tTT

dissolves

movement

k

Dleft Dright

Tleft Tright

I0 I1 IN-3

Figure 2: Diagram of the proposed dissolve detection (Ik is the frame at time index k, N is the
sequence length, FP represent the fading pixels, 1, 2, 3 denote frames from time window w). Left
image exemplifies the twin-thresholding mechanism used for the detection.

For each analyzed frame at time index k, denoted Ik, we first determine the number of fading-out

pixels (denoted FOPk), i.e. pixels whose intensity decreases during next w frames, and fading-in

pixels (denoted FIPk) whose intensity increased during previous w frames. Due to the reduced
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frame 498

“Le Moine et le Poisson”

frame 1702

“Ex-Enfant”

Figure 3: The amount of fading-in (FIP , depicted with Red) and fading-out pixels (FOP , depicted
in Blue) during dissolve transitions. For each movie, the first line of images corresponds to the
original frames while the second one to the corresponding pixel intensities (movies from CITIA [1],
”Le Moine et le Poisson” uses a gouache water-based painting technique while in ”Ex-Enfant” all
visual objects are cast by light shadows). The oX is the temporal axis.

visual continuity of animated movies, we have restricted the search window to only a few frames.

The selection of w is discussed at the end of this section.

In Figure 3 we have illustrated the two proportions of fading pixels for two example of dissolve

transitions. One may observe that in spite of the color resemblance of the two shots, e.g. in ”Le

Moine et le Poisson” the two shots have similar intensities of yellow-based color distributions while

in ”Ex-Enfant” of black and indigo, the proposed measure still captures the fading process. At the

beginning of the dissolve there are more FOP than FIP . As the first image starts disappearing,

the number of FOP increases but also FIP as the final image starts to appear. Both ratios reach

their maximum for the middle frame of the dissolve. Finally, as the final image emerges more and

more, FIP become more predominant than FOP , which finally disappear in the end.

In animated movies the constant presence of displacements/movements or of color effects make

this process to be likely unbalanced, i.e. proportions of FOP and FIP are not equal during dissolve

(e.g. this is slightly visible in Figure 3 in the second example from movie ”Ex-Enfant”). Therefore,
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instead of monitoring high values of FOP and FIP , independently, we determine a normalized

visual discontinuity function by taking a simple ratio of the two values, thus:

FPk =
(FOPk + FIPk)

H ·W
(11)

where H ·W is the image size. Defined in this way, as stated before, ideally, FP should reach its

maximum for the dissolve middle frame (when both shot images are as much as visible).

The main novelty of our approach lies however in the way we carry out the localization of a

dissolve within the FP function. We propose the following twin-thresholding approach (the process

is depicted in Figure 2):

Case I: if FPk for the current frame Ik is greater than a first threshold, denoted τCT (Certain

Threshold), Ik is very likely to be the middle frame of the dissolve, being characterized by, both,

high values of FOPk and FIPk respectively. If this value is a local maximum (both, previous and

next values are decreasing), then a dissolve is declared in the time interval [k− tmax/2; k+ tmax/2],

where tmax is an average estimate of a maximum dissolve length.

Case II: on the other hand, if FPk for image Ik is greater than a second threshold, denoted τTT

(Tolerant Threshold), but still beneath τCT , then the image is considered to be a potential dissolve

middle frame. Further validation is to be performed and consists mainly on the shape analysis of

FP values in the neighborhood of the frame Ik.

In the case of a dissolve, values of FPk should decrease, both, on the positive and negative time

axis. Therefore, we seek for the time moments Tleft < k and Tright > k, when FPk starts increasing

again, thus:

FPTleft
< FPTleft−1 ∧ FPTright

< FPTright+1 (12)

(see Figure 2).

To quantify the relevance of FPk with respect to neighbor values, we compute the height of the
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peak on both sides, thus:

Dleft = |FPk − FPTleft
|, Dright = |FPk − FPTright

| (13)

Similar to the previous case, we decide that a dissolve occurred in the time interval [k−tmax/2; k+

tmax/2] if the distance values are greater then a fraction of FPk, that is:

Dleft > 0.5 · FPk ∧ Dright > 0.5 · FPk (14)

In this way, we assure that FPk is a local maximum, significant enough compared to neighbor values

and which has and increase on both sides of at least 50%, compared to local neighbor minimum.

Intensity fluctuations may also result in several representative peaks of the FPk function during

the same dissolve. Therefore, we may by mistake select multiple frames as dissolve middle frames

within same transition. To avoid this situation, the final step consists on fusing close overlapping

dissolves.

3.1 Parameter tuning

The proposed method involves the choice of several threshold values. The most important are the

value of w (the time window on which we assess the number of fading-in and fading-out pixels, FP ),

τCT (Certain Threshold - above which FP triggers the detection of a dissolve) and τTT (Tolerant

Threshold - above which FP may potentially reveal a dissolve and additional verification of signal

shape is performed; see Figure 2). Thresholds have been empirically determined after the manual

analysis of several representative dissolve examples for various animation techniques.

For the selection of τCT and τTT we use a global approach. Similarly as for cut detection in

animated movies [8], we take advantage of the fact that animated movies in general share similar

color properties [11], also specific to the domain (see Figure 1). Therefore global threshold values

may suffer little changes from one movie to another. This is also visible in Figure 6 where we

display FP for several movies. The two thresholds were determined empirically after the manual

analysis of several representative animated movies. A common setup is to take τCT around 0.4 and
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τTT around 0.1. Increasing these values will result in reducing the false detections but also diminish

the good detections while decreasing the values will do the opposite, thus increasing the number of

good detections but in the same time the number of false detections.

To determine the optimal value for w we have conducted a preliminary test on movie ”Le Moine

et le Poisson” that contains 61 dissolve transitions. Due to the reduced visual continuity of animated

movies, we expect that w should be of only a few frames. We performed the dissolve detection for

w varying from 1 to 5. Figure 4 plots the number of good detections and false detections achieved

for different values of w.

w

#

1 2 3 4
0

20

40

60

80

100

120

140
false detections

good detections

5

Figure 4: Number of good and false dissolve detections against different sizes of the time window
w (movie ”Le Moine et le Poisson” [1]).

One may observe that a very reduced value of w will result in a high number of false detections

while increasing w will decrease significantly the good detections. Increasing more the value of w

(above 5) will result in both very low accuracy and a high number of false detections. The best

compromise would be to take w = 3 where good and false detections are both optimal which is the

value used in our experiments.

The validation of our approach is presented in the following section.
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4 Experimental results

To test our approach we have selected movies created with a high diversity of animated techniques

that fall in two categories of contents:

• highly complex (abstract, very complex visual contents, motion discontinuity - denoted ↑),

• average complexity (average amount of visual effects, motion content less discontinuous -

denoted ↔).

Movies are presented in Figure 51. The test data set consists of 61 minutes of video footage and

contains a total number of 452 dissolve transitions.

« ­ « ­ ­ «« ­ « ­ ­ «­­

Figure 5: Test data set (movies from CITIA [1], from left to right: ”Ex-Enfant”, ”Le Moine et
le Poisson”, ”M. Pascal”, ”Une Bonne Journée”, ”Paradise”, ”Cœur de Secours” and ”The Sand
Castle”).

To assess performance we use classic precision and recall:

P =
GD

GD + FD
, R =

GD

GD +ND
(15)

where GD is the number of good detections (true positives), FD is the number of false detections

(false positive) and ND is the number of non-detections (false negative), where GD + ND = 452

(i.e. the total number of dissolves). The detection results are summarized with Table 1.

Overall, we score 360 good detections and a very reduced number of false detections, i.e. only

23 (for most of the sequences < 2). This leads to an average precision of 94% and a recall of 79.6%.

At sequence level, precision and recall ranges from [86.3; 100]% and [70.2; 100]%, respectively. The

1movies are available for free preview or for purchasing at CITIA (http://www.citia.info/) or on YouTube
http://www.youtube.com/).
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Table 1: Dissolve detection results.
movie count GD FD P R

”Ex-Enfant”↑ 75 65 8 89% 86.7%
”Le Moine et le Poisson”↔ 61 47 2 95.9% 77.1%
”M. Pascal”↑ 98 76 2 97.4% 77.6%
”Une Bonne Journée”↔ 19 19 0 100% 100%

”Paradise”↑ 60 44 7 86.3% 73.3%
”Cœur de Secours”↑ 67 47 2 95.9% 70.2%
”The Sand Castle”↔ 72 62 2 96.9% 86.1%

highest detection ratio is obtained for movie ”Une Bonne Journée” which has a more accessible

content (P = R = 100%), while the lowest detection ratio is obtained for the movie ”Paradise” due

to its very complex content (P = 86.26%, R = 73.33%).

We attempted to compare our approach against other reference methods from the literature.

We use two confirmed approaches, namely: the assessment of the variance of pixel intensities, which

during dissolves should yield a quadratic behavior [20], and the use of Edge Change Ratio [22] for

which edges were obtained with a Canny edge detector with automatic thresholding [5]. Methods

are presented in Section 2. The experimental results proved that classic methods tend to be rather

inefficient when used on this particular type of video contents.

Figure 6 exemplifies the three approaches for several representative movies. Due to the discontin-

uous nature of the motion content and to the presence of visual effects, variance of pixel intensities

do not follow a parabolic shape. Instead, it has an unpredictable behavior (see the Green line in

Figure 6, e.g. movie C) or unexpectedly decreasing or increasing during dissolves (e.g. movies A,

B or D). On the other hand, contour information (i.e. ECR), whether for some particular cases it

provides good discrimination (similar to FP , see in Figure 6 the Black line for movie C), in general

is either non-discriminant (see movie A where ECR has small values during dissolves) or highly

sensitive to noise and visual changes (see movies B and D where important peaks are due not to

dissolves but to noise, fading effects and important changes in object structure).

On the other hand, the proposed method provides good results in all situations (see the good

detections in Figure 6). Thanks to the shape analysis, which adapts to local contents, it is discrim-
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Figure 6: The proposed discontinuity function FPk (in Red) against intensity variance (in Green,
values are scaled to fit the other functions) and Edge Change Ratio (in Black). Dissolves which
were successfully detected are marked on the temporal axis (oX) with vertical Red segments (graphs
were deliberately slightly shifted on the oY axis with respect to 0 for visualization purpose; Video
1, QuickTime, MOV, 24MB, http://imag.pub.ro/∼bionescu/index files/DemoDissolves.wmv).

inant enough to retrieve dissolves even when mixed-up with motion (see the Red line in Figure 6,

e.g. the first detected dissolve in movie B or the second detected dissolve in movie C which are

successfully separated from camera movement) and to avoid false detections (see movie C where

camera movement and other visual effects are not taken as dissolves despite their high FP values).
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Also, judging from the time evolution of the FP function, a global thresholding strategy, like

the one proposed in [19] (see Section 2), is less efficient with most of the movies. This is due to the

fact that most dissolves are either merged with other visual changes or have comparable amplitudes

with other variations (e.g. see the Red line for movie C or D in Figure 6). In general, movies with

a highly complex visual contents (denoted with ↑) tend to have similar behavior of the FP function

such as for movie C (for reason for brevity, we limit to the presentation of only four examples in

Figure 6).

In Figure 7 we present several examples of complex dissolves which were successfully detected

regardless their atypical patterns: important global motion (movie E and F where the background

is continuously shifting during dissolve), similar color intensities and structure for the start and

end image of the dissolve (movie C), highly discontinuous content (movies A, C and D), very short

dissolves (∼ 3 frames, movies A and D). In what concerns the detection errors, most of the non-

detections are due to very complex scene changes which makes impossible to provide separation for

the dissolves. Less frequent are the false detections (see Table 1), which are occurring mostly due

to visual changes with dissolve-like signatures. A typical pattern is an object/camera movement

followed by a shot change (i.e. a cut) and again by motion.

The achieved results are very promising considering the difficulty of the test sequences or even

compared to existing approaches, which applied to natural movies achieve average detection ratios

around 80% (see Section 2).

Finally, the proposed approach provides also good computational performance. Table 2 presents

the results obtained on a regular laptop computer, CPU Intel(R) Core(TM) i5 M460@2.53GHz, 4GB

of RAM running on Microsoft Windows 7 - 64 bit2. The presented processing time includes also

the delays caused by the visual interface, as images are displayed as being processed (application

developed under Borland C++ Builder 6).

2for calculations we consider a frame rate of 25 frames per second.
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E: “Coeur de Secours”
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902

frame 1617
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C: “Ex-Enfant”
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F: “Coeur de Secours”

Figure 7: Example of complex or atypical dissolve transitions which were successfully detected with
the proposed approach (movies from CITIA [1]). The oX axis is the temporal axis.

Table 2: Dissolve detection processing time.
image size (pixels) frames/s time processing 10 min.

60× 45 134 112s
120× 90 128 117s
240× 180 94 160s
480× 360 72 208s

740× 480 (original) 43 349s

For instance, at a frame resolution of 120×90 pixels it achieves more than 128 frames per second

(5 times faster than real time). Compared to using original frame resolution, it is three times faster

(for the later we achieve only 43 frames per second). Nevertheless, even in this case, the detection

performs almost twice faster than real time. In terms of detection errors, we obtain results very
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similar at all scales, therefore, by reducing the image size we increase the performance efficiency.

5 Conclusion

We proposed a dissolve detection approach that addresses the specificity of the animated videos

(e.g. many animated movies are created frame by frame thus affecting the continuity of the visual

and motion flow, each animated movie has a specific color palette and therefore there is a strong

color similarity between shots, and so on). The proposed method exploits pixel intensities in terms

of amount of fading-out and fading-in pixels. The main novelty of our method is in the way we carry

out the localization of the dissolves within the discontinuity function. We use a twin-thresholding

mechanism and the shape analysis of the signal.

Experimental tests conducted on more than 452 dissolve transitions show the potential of this

approach in cases where traditional methods (adapted to natural movies) tend to fail. It allows

to reduce false detections caused by steep intensity fluctuations (due to noise, movement, visual

effects, etc.), as well as to retrieve dissolves caught up in other visual effects or scene movements

(very frequent in animated movies) leading to precision and recall ratios up to 100% (producing

a very low number of false alarms). In terms of computational complexity, the proposed method

performs five times faster than real time on a regular computer.

The method seems to be less efficient when dealing with some very complex scene changes

and fade transitions that involve camera movement and special effects. Another limitation is the

impossibility of determining the exact dissolve boundaries. Future work will mainly consists on

addressing this limitation by investigating the behavior of various features in the neighborhood of

the starting and ending frames of a dissolve.
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