Few-shot Object Detection as a Service:
Facilitating Training and Deployment for
Domain Experts

Werner Bailerl [0000—0003—2442—4900]
Bogdan IOHCSCU2 [0000—0002—7728—0640]

2[0000—0002—8189—8566]
)
dl [0000—0001—7113—0038]

, Mihai Dogariu
, and Hannes Fassol

! JOANNEUM RESEARCH - DIGITAL, Graz, Austria
{firstname.lastname}@joanneun.at
2 National University of Science and Technology POLITEHNICA Bucharest,
Romania
{firstname.lastname}Qupb.ro

Abstract. We propose a service-based approach for training few-shot
object detectors and running inference with these models. This eliminates
the need to write code or execute scripts, thus enabling domain experts
to train their own detectors. The training service implements an efficient
ensemble learning method in order to obtain more robust models without
parameter search. The entire pipeline is deployed as a single container
and can be controlled from a web user interface.

Keywords: few-shot learning, object detection, ensemble learning, data
preparation

1 Introduction

Few-shot object detection is useful in order to extend object detection capabili-
ties in archiving and sourcing of multimedia content with specific object classes
of interest for a particular organization or production context. For example, a
specific class of objects may be relevant for a media production project, but not
among those commonly annotated. Current workflows and tools for training few-
shot object detectors have been created for data scientists and developers, but
are not usable by domain experts (for example documentalists or journalists),
who can provide and annotate the training samples of interest. Data scientists
are usually not part of a media production team, and involving them is not
possible on short notice for a small task. In order to leverage the progress in
research on few-shot object detection for practitioners, it is thus necessary to
enable them to use these tools themselves.

We build on the work in [2], which proposed integrated training scripts and
support in content annotation tools. In addition, we provide ensemble learn-
ing methods for more robust training processes. Both are built using the same
FSOD framework [14] and can thus be integrated. [2] has addressed the issue
of integrating all necessary steps into the training workflow, and providing an

2 Bailer et al.

extension of an annotation tool to label the data for novel classes. However, it
may still be hard for non-experts to select an appropriate model and find a good
configuration for training. In addition, once trained, the result is a serialised
model, requiring access (via remote shell or desktop) to the training server in
order to use the model further.

This paper addresses the shortcomings that prevent domain experts from
training their own few-shot object detectors. It demonstrates a service for few-
shot object detection that (i) runs the entire training workflow for the pro-
vided data, (ii) includes ensemble learning methods in order to facilitate achiev-
ing good results without the need for lengthy parameter tuning and (iii) de-
ploys the trained model automatically as a service. The code is available at
https://github.com/wbailer/few-shot-object-detection.

The rest of this paper is organised as follows. Section 2 provides a brief
overview of the related work on ensemble learning for few-shot object detection
(FSOD) and tools for few-shot training. Section 3 presents the integrated ensem-
ble learning method, the training service is described in Section 4, and Section 5
concludes the paper.

2 Related Work

2.1 Ensemble Learning for FSOD

Few-shot object detection is by itself a relatively new topic, being addressed by
a modest, albeit growing, number of works. As a sub-topic, ensemble learning
in few-shot object detection is even more arcane. Ensembling efforts have been
mostly made in the image classification field [7, 13, 1], or for object detection [5,
9,4], in both cases approaching techniques such as cooperation, competition
or voting schemes. Separately, different groups of researchers tackled the few-
shot object detection problem [3,11, 15, 14], with focus on meta-learning, weight
sharing or fine-tuning approaches. However, we could not find any work related
to ensemble learning in the few-shot object detection scenario. Therefore, to our
knowledge, our work is the first in this field.

2.2 Tooling for Few-shot Training

Torchmeta [6] is a Python library for meta-learning, providing a common inter-
face for working with different algorithms and datasets. However, no support for
using own/aggregated datasets is provided. Argilla®, a data framework for large
language models, also provides some support for facilitating few-shot learning.
Similarly, AutoML frameworks such as Amazon SageMaker* and AutoGluon®
provide some support to set up few-shot learning tasks. However, all these ap-
proaches still require coding.

3 https://argilla.io/
* https://aws.amazon.com/de/sagemaker/
® https://auto.gluon.ai/stable/index.html

Few-shot Object Detection as a Service 3

The approach in [2] focuses on using custom data for novel classes, possi-
bly in combination with other datasets. An integration with the MakeSense®
annotation tool is provided, in order to obtain a set of files for the training
process, which can be fed into a single script running the two-stage finetuning
approach [14]. Two recent works for action recognition [8] and medical image
segmentation [12] propose interactive few-shot learning frameworks, aiming at
getting required annotations, as well as guiding the human annotator towards
creating discriminative annotations. However, these frameworks do not consider
deployment of the final model, and require having the human user in the loop.

3 Integrated Ensemble Learning

We base our ensembling strategy on a mixture between the works of Wang et
al. [14] and Dvornik et al. [7]. In the former, FSOD is introduced as a fine-tuning
step on top of a pre-trained two-stage object detector. The authors argue that
having a pre-trained detector, it is sufficient to freeze the entire network, except
for the last two layers and perform fine-tuning solely on these layers in order to
obtain improved performance. In the latter, the authors tackle the problem of
image classification and argue that having several networks performing the same
classification task together yields better results due to having as little as possible
different random weight initialization. The authors study the impact brought by
having several almost identical classifiers perform the same job, with the only
difference between them being the random values used to initialize the weights
in the training process.

Two-stage object detectors generally consist of two fundamental sections: the
region (or object) proposal network (RPN) and the feature extractor, together
with a classifier, working on top of it. Ensembling strategies usually deploy sev-
eral networks and process their set of outcomes, as depicted in Fig. 1a. However,
this bears the cost of training N different networks with N usually being greater
than 5. From the resource point of view, this type of processing is very costly,
especially GPU-wise. Furthermore, the ensemble is usually distilled in order to
reduce inference time, possibly at the cost of also reducing the system’s perfor-
mance.

Our ensemble learning paradigm takes advantage of the fact that the frame-
work presented in [14] freezes almost the entire two-stage object detection net-
work. This leaves the object classifier part open for fine-tuning. Following [7],
we apply a set of classifiers on top of the features extracted from the RPN’s
proposed boxes and generate N classification decisions for each proposed box, as
depicted in Fig. 1b, thus approximately simulating an ensemble of N complete
networks. Then, a regular non-maximum suppression (NMS) algorithm is ap-
plied for the resulting proposals. From this point on, the system approximates
a single object detector, with enhanced detection capabilities.

The main difference between this method and the usual ensembling strategy
is that we reduce the use of resources N-fold. One could argue that our pro-

5 https://www.makesense.ai/

4 Bailer et al.

« Classifier #1

Feature —
RPN #: > * Cl; fier #: h
: Extractor #1 CIEIOS « Classifier #2

Y .
Feature " / \
RPN #2 > * Classifier #2
Extractor #2 RPN N S » Classifier #3 Ensembled
Extractor . Classification

Feature - Ensembled
RS Extractor #3 Cassiherss # Classification N\

\\
* Classifier # N
Feature

RPN #N * Extractor #N > Classifier #N

(b) Proposed ensembling of FSOD sys-
(a) Regular ensembling of FSOD systems. tems.

Fig.1: Comparison between regular and proposed ensembling architectures for
FSOD systems.

posed system’s RPN does not behave in the same manner as in the original case,
having N times less proposed boxes to work on, but allowing the ensembled sys-
tem’s RPN to propose a large amount of possible objects (>2000) reaches the
same performance as a combination of several RPNs, since the vast majority
of the proposed regions are, in fact, not objects, and are therefore redundant.
Another significant advantage of our method is that it is almost free to scale.
Adding another network to the ensemble is reduced to adding another classifi-
cation head to the architecture, which has insignificant impact from a memory
standpoint. This method adds flexibility in the sense that it can be applied to
a large number of network architectures that follow this working environment.
Both the classifiers and the ensembling algorithm can remain unchanged from
the regular ensembling setup. Performance-wise, our ensembling method adds
a slight improvement to the detection performance of the original system [14].
To the best of our knowledge, this type of approach has not been tried before.
Therefore, we compared our proposed system on the MS COCO [10] dataset
with the original work of Wang et al. [14], while keeping the evaluation protocol
unchanged. We obtained an AP@0.5 of 10.1 and 13.6 on 10 and 30 shots, respec-
tively, compared to the original results of 10.0 and 13.4, respectively. Thus, our
method essentially adds a marginal improvement with virtually no additional
cost incurred.

4 Few-shot Learning as a Service

We aim to provide few-shot learning as a service usable by domain experts. The
extension of the MakeSense annotation tool described in our earlier work [2]
allows annotating the new images and downloading the configuration files for the
few-shot training task. We extend this by providing a RESTful API for starting
and monitoring the training process, together with a TorchServe” instance that
provides a RESTful interface for running inference using both pretrained and
new models. A simple web page for testing the whole process is provided, and

7 https://pytorch.org/serve/

Few-shot Object Detection as a Service 5

neither installation on the client side nor direct access to the remote server is
required.

All components are deployed as a Docker® container to facilitate deployment.
The container is built to be deployed on an environment with GPU acceleration.
The scripts to generate and run the container are provided on the Github repos-
itory.

4.1 Training Workflow and Service

The training workflow builds on the script described in [2], which prepares the
training and validation datasets and related configurations on the fly from the
submitted data, runs the training on the novel classes, merges the base and novel
class weights in the classification head of the model, and runs the finetuning over
all classes. This script has now been extended to support the ensemble train-
ing methods, and integrated into the backend of a server exposing a RESTful
interface, implement using Flask®.

The training endpoint of the service receives two ZIP files, one containing
the configuration and annotation files generated by the annotation tool and the
other the set of images. The configuration file specifies the name of the model
to be trained, base model used and the number of novel classes. These files are
stored on the training server, and the training procedure is invoked.

In order to monitor the training process, a logging endpoint has been im-
plemented, which can be invoked to access the entire log or a number of tail
lines.

A simple HTML page is provided to invoke the training, view logs and test
inference. The page is hosted by the Flask server providing the training endpoint.
Figure 2 shows screenshots of different stages of this page.

4.2 Auto-deployment

TorchServe is a framework for deploying PyTorch models for inference. A model
is packaged as a model archive, containing a handler class, necessary configura-
tion files and the trained weights of the model. We have built a custom handler
based on TorchServe’s object detection handler, which can generically serve the
base models as well as any novel/combined models trained on the server.

Once few-shot training is completed, the required configuration files for the
running inference in TorchServe are generated, and model archive is built. Using
the TorchServe management API, the model is deployed to the server. To the
best of our knowledge, this is the first work proposing a fully automated chain
from training to deployment for few-shot object detection.

The TorchServe instance provided in the container starts already with base
models trained on MS COCO, either on all or 60 of the classes (which is a
common setting for evaluating few-shot object detection). Additional models are

8 https://www.docker.com/
9 https://flask.palletsprojects.com

6 Bailer et al.

[10/10 19:32:48 fsdet.evaluation. testing]: copypaste: Task: bbox

FSOD Service Demo

110/10 19:32:48 fsdet..evaluation. testing]: copypaste: Task: bbox
L 110/10 19:32:48 fsdet.evalustion. testing]: copypaste: AP,APS0,APTS,APs, AP, APL,bAP, bAPSO, bAPTS, bAPs bAPr, |

Select training data / Sl

110/10 19:32:48 fsdet.evalustion. testing]: copypaste: AP,APS0,APTS,APs,APm, APL,bAP, bAPSO, bAPTS, bAPs bAPr, |

Config files (ZIP): [Browse...| tm2a.zip

Images (ZIP): Browse...| tm2.train images.2ip

[10/10 19:32:48 fsdet.evaluation. testing]: copypaste: 32.9358,52.3071,36.1992,21.1770,36.5581,40..4759,33.¢

Use ensemble learning with 2 | components [16/10 19:32:48 fsdet. evaluation. testing]: copypaste: 32.9358,52.3071,36.1992,21.1770,36.5581,40.4759, 33.
Train |

training started compLETED

Check logs Test service

Name of tasks:[C0C060_tm2a
Number of tail lines: [10
Getlog

Note: check in the logs that the training and deployment has been completed without errors.
Name of model: 0C060_tmza
Test image: [Browse... | finland-3963219_1920.jpg

Last logs

Test
[16/11 15:16:31 G2.utils events]: eta: 2:45:40 iter: 679 total loss: 0.1601 loss cls: 01119 Loss box reg: 0.0338
[10/11 15:16:31 d2.utils.events]: eta: 2:46:40 iter: 679 total loss: 0.1681 loss cls: 0.1119 loss box reg: 0.03% Detection result
(10/11 15:16:44 d2.utils events]: eta: 2:45:27 iter: 699 total loss: 0.178 loss cls: 0.1136 loss_box reg: 0.03652
(10711 15:16:44 d2.utils events]: eta: 2:45:27 iter: 699 total loss: 0.178 loss cls: 0.1136 loss_box reg: 0.03652
(10711 15:16:57 d2.utils events]: eta: 2:45:32 iter: 719 total loss: 0.1765 loss cls: 01125 Loss box reg: 0.0326
110711 15:16:57 d2.utils events]: eta: 2:46:32 iter: 719 total loss: 0.1765 loss cls: 01125 Loss box reg: 0.0326
110/11 15:19:10 d2.utils events]: eta: 2:46:19 iter: 739 total loss: 0.1663 loss cls: 01109 Loss box reg: 0.0328

[10/11 15:19:10 d2.utils.events]: eta: 2:46:19 iter: 739

: 0.1683 loss cls: 01109 Loss box_reg: 0.0328

[10/11 15:18:23 d2.ut; 51 eta: 2:45:47 iter: 0.1748 61139 Lo

[19/1 15:19:23 o

s1: eta: 2:45:47 iter: 0.1738 a1

{
“windturbine”: [
[
1166.2099267578125,
3.1666033267974854,
1500.93994140625,
929.3928364257812

1
"Score": 0.22937625646591187

Fig. 2: Screenshot of the demo HTML page when configuring training and view-
ing logs (left) and testing inference with the newly trained model (right).

deployed and reachable via an endpoint that is named with the label provided
for the model in the configuration file.

5 Conclusion

Building on previous work for facilitating training of few-shot object detectors,
we provide the entire training and testing workflow of detectors as a service,
usable for domain experts without the need to write code or install any software
on the client device. The training service also integrates an efficient ensemble
learning method.

Acknowledgements The research leading to these results has been funded par-
tially by the European Union’s Horizon 2020 research and innovation programme
under grant agreement n° 951911 AI4Media (https://aidmedia.eu).

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.

References
1. Afrasiyabi, A., Larochelle, H., Lalonde, J.F., Gagné, C.: Matching feature sets for

few-shot image classification. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9014-9024 (2022)

10.

11.

12.

13.

14.

15.

Few-shot Object Detection as a Service 7

. Bailer, W.: Making few-shot object detection simpler and less frustrating. In: In-

ternational Conference on Multimedia Modeling. pp. 445-451. Springer (2022)
Bar, A., Wang, X., Kantorov, V., Reed, C.J., Herzig, R., Chechik, G., Rohrbach,
A., Darrell, T., Globerson, A.: Detreg: Unsupervised pretraining with region priors
for object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14605-14615 (2022)

Carranza-Garcia, M., Lara-Benitez, P., Garcia-Gutiérrez, J., Riquelme, J.C.: En-
hancing object detection for autonomous driving by optimizing anchor generation
and addressing class imbalance. Neurocomputing 449, 229-244 (2021)
Casado-Garcia, A., Heras, J.: Ensemble methods for object detection. In: ECAI
2020, pp. 2688-2695. IOS Press (2020)

Deleu, T., Wiirfl, T., Samiei, M., Cohen, J.P., Bengio, Y.: Torchmeta: A Meta-
Learning library for PyTorch (2019), https://arxiv.org/abs/1909.06576, available
at: https://github.com/tristandeleu/pytorch-meta

Dvornik, N., Schmid, C., Mairal, J.: Diversity with cooperation: Ensemble methods
for few-shot classification. In: Proceedings of the IEEE/CVF international confer-
ence on computer vision. pp. 3723-3731 (2019)

Gassen, M., Metzler, F., Prescher, E., Prasad, V., Scherf, L., Kaiser, F., et al.: 13:
Interactive iterative improvement for few-shot action segmentation. In: 2023 32nd
IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN), Busan, SOUTH KOREA (2023)

Lee, J., Lee, S.K., Yang, S.I.: An ensemble method of cnn models for object detec-
tion. In: 2018 International Conference on Information and Communication Tech-
nology Convergence (ICTC). pp. 898-901. IEEE (2018)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision—
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740-755. Springer (2014)

Liu, F., Zhang, X., Peng, Z., Guo, Z., Wan, F., Ji, X., Ye, Q.: Integrally mi-
grating pre-trained transformer encoder-decoders for visual object detection. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
6825-6834 (2023)

Miyata, S., Chang, C.M., Igarashi, T.: Trafne: A training framework for non-expert
annotators with auto validation and expert feedback. In: International Conference
on Human-Computer Interaction. pp. 475-494. Springer (2022)

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot
image classification: a good embedding is all you need? In: Computer Vision-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XIV 16. pp. 266-282. Springer (2020)

Wang, X., Huang, T., Gonzalez, J., Darrell, T., Yu, F.: Frustratingly simple few-
shot object detection. In: International Conference on Machine Learning. pp. 9919-
9928. PMLR (2020)

Xiao, Y., Lepetit, V., Marlet, R.: Few-shot object detection and viewpoint estima-
tion for objects in the wild. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45(3), 3090-3106 (2022)

