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Abstract In this paper, we discuss and audio-visual approach to automatic
web video categorization. To this end, we propose content descriptors which
exploit audio, temporal, and color content. The power of our descriptors was
validated both in the context of a classification system and as part of an in-
formation retrieval approach. For this purpose, we used a real-world scenario,
comprising 26 video categories from the blip.tv media platform (up to 421
hours of video footage). Additionally, to bridge the descriptor semantic gap,
we propose a new relevance feedback technique which is based on hierarchical
clustering. Experiments demonstrated that with this technique retrieval per-
formance can be increased significantly and becomes comparable to that of
high level semantic textual descriptors.

Keywords audio block-based descriptors · color perception · action
assessment · video relevance feedback · video genre classification

B. Ionescu
LAPI, University ”Politehnica” of Bucharest, 061071, Romania,
LISTIC, Polytech Annecy-Chambery, University of Savoie, 74944, France,
E-mail: bionescu@alpha.imag.pub.ro

K. Seyerlehner
DCP, Johannes Kepler University, A-4040 Austria,
E-mail: klaus.seyerlehner@jku.at

I. Mironică
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1 Introduction

Automatic labeling of video footage according to genre is a common require-
ment in indexing large and heterogeneous collections of video material. This
task can be tackled, either globally or locally. Global classification approaches
aim to categorize videos into one of several main genres, such as cartoons, mu-
sic, news, sports, documentaries, or with finer granularity into sub-genres, for
instance, according to specific types of sports (e.g., football, hockey) or movie
(e.g., drama, thriller). Local classification approaches, in contrast, label video
segments instead of whole videos according to specific human-centered con-
cepts, for instance, outdoor vs. indoor scenes, action segments, scenes showing
violence (see TRECVid campaign [3]).

In this paper, we address the global classification task and consider the
problem within a machine learning paradigm. In the literature, many sources
of information have been exploited for this task [1]. A common approach is
to use text-based information. Most existing web media search engines (e.g.,
YouTube, blip.tv) rely on text-based retrieval, as it provides a higher seman-
tic level of description than other information sources. Text is obtained either
from scene text (e.g., graphic text, sub-titles), from the transcripts of dialogues
obtained with speech recognition techniques, or from other external sources,
for instance, synopses, user tags, metadata. Common genre classification ap-
proaches include classic Bag-of-Words model [4] and Term Frequency-Inverse
Document Frequency (TF-IDF) approaches [2].

Using audio-visual information is less accurate than using text. Audio-based
information can be derived either from the time or from the frequency domain.
Typical time-domain approaches include the use of Root Mean Square (RMS)
of signal energy [25], sub-band information [5], Zero-Crossing Rate (ZCR)
[27] or silence ratio. Frequency-domain features include energy distribution,
frequency centroid [27], bandwidth, pitch [6] and Mel-Frequency Cepstral Co-
efficients (MFCC) [26].

The most popular type of audio-visual content descriptors are, however
visual descriptors. They exploit both static and dynamic aspects of visual
information either in the spatial domain, for instance, using color, temporal
structure, objects, feature points, motion, or in the compressed domain, for
example, using MPEG coefficients [1]. Color descriptors are generally derived
at the image level and quantified via color histograms or other low-level pa-
rameters such as predominant color, color entropy, and variance (various color
spaces are employed, e.g. RGB - Red Green Blue, HSV - Hue Saturation Value,
and YCbCr - Luminance, Chrominance) [7] [8]. Temporal structure-based de-

scriptors exploit temporal segmentation of video sequences. A video sequence
is composed of several video shots connected by video transitions, which can
be sharp (cuts) or gradual (fades, dissolves) [28]. Existing approaches basi-
cally exploit the frequency of their occurrence in the movie. Although some
approaches use this information directly [9] (e.g., rhythm, average shot length),
others derive features related to visual activity and exploit the concept of ac-
tion (e.g., a high frequency of shot changes is often correlated with action) [21].
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Object-based features in genre classification are generally limited to character-
izing the occurrence of face and text regions in frames [9] [21]. Other related
approaches exploit the presence of feature points, for example, using the well
known SIFT descriptors [13]. Motion-based descriptors are derived either by
motion detection techniques (foreground detection) or by motion estimation
(i.e., prediction of pixel displacement vectors between frames). Typical features
describe motion density, camera movement (global movement), or object tra-
jectory [11]. Finally, less common are features computed in the compressed

video domain, for example, using DCT (Discrete Cosine Transform) coeffi-
cients and embedded motion vectors from the MPEG flow [12]. Their main
advantage is their availability with the initial video file.

All sources of information provide advantages and disadvantages. However,
depending on the classification scenario, some prove to be more convenient
than others. Text-based information, due to its high informational redundancy
and reduced availability with visual information, can be less relevant when
addressing a reduced number of genres (e.g., TV media genres). Also, it can
produce high error rates if retrieved with speech transcription techniques [1];
however, it is the ”golden standard” in web genre categorization; object-based
information, although computationally expensive to process, tends to be semi-
automatic (requires human confirmation); motion information tends to be
available in high quantities during the entire sequence (object/camera), but is
insufficient by itself to distinguish between specific genres, for instance, movies,
sports, music [1]. Audio-based information provides good discriminative power
for most common TV genres and requires fewer computational resources to
be obtained and processed. Color information is not only simple to extract
and inexpensive to process, but also very powerful in distinguishing cinematic
principles and techniques; temporal-based information is a popular choice and
proves to be powerful as long as efficient video transition detection algorithms
are employed (e.g., adapting to web-specific low-quality video contents [22]).

The remainder of this paper is organized as follows: Section 2 discusses,
and situates our work in relation to, several relevant genre classification ap-
proaches. Section 3 presents the proposed video descriptors (audio, temporal,
and color-based). Section 4 discusses the improvement in retrieval performance
achieved with relevance feedback, and proposes an approach inspired by hi-
erarchical clustering. Experimental results are presented in Section 5, while
Section 6 presents the conclusions and discusses future work.

2 Related work

Although, some sources of information provide better results than others in
video genre categorization [1], the most reliable approaches - which also tar-
get a wider range of genres - are multi-modal, that is multi-source. In this
section, we discuss the performance of several approaches we consider rele-
vant for the present work - from single-modal (which are limited to coping
with a reduced number of genres) to multi-modal (which target more complex
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categorizations). We focus exclusively on approaches relying on audio-visual
information - the subject of this study.

A simple, single-modal approach is that proposed in [14]. It addresses genre
classification using only video dynamics, namely background camera motion
and object motion. A single feature vector in the DCT-transformed space en-
sures low-pass filtering, orthogonality, and reduced feature dimension. A clas-
sifier based on a Gaussian Mixture Model (GMM) is then used to identify three
common genres: sports, cartoons, and news. Despite the limited content infor-
mation used, applying this approach to a reduced number of genres achieves
detection errors below 6%. The authors of [21] used spatio-temporal infor-
mation such as average shot length, cut percentage, average color difference,
camera motion (temporal) and face frames ratio, average brightness, and color
entropy (spatial). Genre classification is addressed at different levels according
to a hierarchical ontology of video genres. Several classification schemes (De-
cision Trees and several SVM approaches) are used to classify video footage
into the main genres movie, commercial, news, music, and sports, and further
into sub-genres: movies into action, comedy, horror, and cartoons, and sports
into baseball, football, volleyball, tennis, basketball, and soccer. The high-
est precision in video genre categorization is around 88.6% and in sub-genre
categorization 97% for sports and up to 81.3% for movies.

However, truly multi-modal approaches also include audio information. For
instance, the approach in [15] combines synchronized audio (14 Mel-Frequency
Cepstral Coefficients - MFCC) and visual features (mean and standard devi-
ation of motion vectors, MPEG-7 visual descriptors). Dimensionality of the
feature vectors is reduced by means of Principal Component Analysis (PCA),
and videos are classified with a GMM-based classifier. Tested with five com-
mon video genres, namely sports, cartoons, news, commercials, and music, this
approach yields an average correct classification up to 86.5%. Another exam-
ple is the approach proposed in [31]. Features are extracted from four sources:
visual-perceptual information (color, texture, and motion), structural infor-
mation (shot length, shot distribution, shot rhythm, shot clusters duration,
and saturation), cognitive information (e.g., number, positions, and dimen-
sions of faces) and aural information (transcribed text, sound characteristics).
These features are used to train a parallel Neural Network, which achieves
an accuracy of up to 95% in distinguishing between seven video genres and
sub-genres, namely football, cartoons, music, weather forecast, newscast, talk
shows, and commercials. A generic approach to video categorization was dis-
cussed in [16]. Each video document is modeled by a Temporal Relation Matrix
(TRM) which describes the relationship between video segments, that is, tem-
poral intervals related to the occurrence of a specific type of event. Events
are defined based on the specificity of video features, such as speech, mu-
sic, applause, speaker (audio) and color, texture, activity rate, face detection,
costume (visual). TRMs provide a similarity measure between documents.
Experimental tests with several classification approaches (mostly tree-based)
and the six video genres news, soccer, TV series, documentary, TV games, and
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movies resulted in individual genre Fscore ratios ranging from 40% to 100%
(e.g., for a Random Forest with cross-validation).

In this paper, we propose three categories of content descriptors which
exploit both audio and visual modalities. Although these sources of informa-
tion have already been exploited, one of the novelties of our approach is the
way we compute the descriptors. The proposed audio features are block-level-
based and have the advantage of capturing local temporal information by
analyzing sequences of consecutive frames in a time-frequency representation.
Visual information is described with temporal information and color proper-
ties. Temporal descriptors are derived using a classic confirmed approach, that
is, analysis of shot change frequency [21] [31]. Further, we introduce a novel
way of assessing action content by considering human perception. We seek to
capture aspects of color perception with our color descriptors. Instead of the
typical low-level color descriptors (e.g., predominant color, color variance, color
entropy and frame-based histograms [21]), we project histogram features onto
a standard human color naming system and determine descriptors such as the
percentage of light colors, cold colors, saturated colors, color contrasts, and el-
ementary hue distribution. This achieves a higher semantic level of description.
A preliminary validation of the proposed descriptors classifying seven common
TV genres (i.e., animated movies, commercials, documentaries, movies, music
videos, news broadcast, and sports) yielded average precision and recall ratios
of 87%− 100% and 77%− 100%, respectively [18].

We extended and adapted this approach to the categorization of web video
genres. Several experimental tests conducted on a real-world scenario - using
up to 26 genres provided by the blip.tv media platform and approximately
421 hours of video footage - demonstrated the power of our audio-visual de-
scriptors in this classification task. Tests were conducted both in the context
of a classification system and as part of an information retrieval approach. To
bridge the semantic gap, we also investigated the potential use of user expertise
and propose a new relevance feedback technique which is based on hierarchical
clustering. This allows us to boost retrieval performance of the audio-visual
descriptors close to that obtained with high-level semantic textual information.

3 Content description

As previously mentioned, we use both, audio and visual information to classify
video genres. From the existing modalities we exploit the audio soundtrack,
temporal structure, and color content.

Our selection is motivated by the specificity of these information sources
with respect to video genre. For instance, most common video genres have
very specific audio signatures: music clips contain music, there is a higher
prevalence of monologues/dialogues in news broadcasts, documentaries have
a mixture of natural sounds, speech, and ambient music, in sports there is
crowd noise, and so on. Considered visually, temporal structure and colors
highlight specific genre contents; for instance, commercials and music clips
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tend to have a high visual tempo, music clips and movies tend to have darker
colors (mainly due to the use of special effects), commercials use many gradual
transitions, documentaries have reduced action content, animated movies have
specific color palettes and color contrasts, sports usually have a predominant
hue (e.g., green for soccer, white for ice hockey), in news broadcasting an
anchor is present (high frequency of faces).

The proposed content descriptors are to be determined globally, thus cov-
ering the complete sequence. Each modality results in a feature vector. This
approach has the advantage of facilitating data fusion by simple concatena-
tion of the resulting data. Below we describe each category of descriptors and
emphasize their advantages.

3.1 Audio descriptors

To address the range of video genres, we propose audio descriptors which are
related to rhythm, timbre, onset strength, noisiness and vocal aspects [20].
The proposed set of audio descriptors, called block-level audio features, have
the key advantage of capturing temporal information from the audio track at
a local level. Standard spectral audio features, such as Mel Frequency Spectral
Coefficient, Spectral Centroid, and Spectral Roll Off, are commonly extracted
from each spectral frame of the time-frequency representation of an audio
signal (capturing a time span of 20 ms). The features we propose are computed
from sequences of consecutive spectral frames called blocks. Depending on
the feature, a block consists of 10 to up to 512 consecutive spectral frames.
Thus, local features can themselves capture temporal properties (e.g., rhythmic
aspects) of an audio track over a time span ranging from half a second up to
12 seconds of audio.

Blocks are analyzed at a constant rate and their frames overlap by default
by 50%. We determine one local feature vector per block. These local vectors
are then summarized by computing simple statistics separately for each di-
mension of the local feature vectors (e.g., depending on the feature, we use
mean, variance, or median). A schematic diagram of this procedure is depicted
in Figure 1.

First, the audio track is converted into a 22kHz mono signal. To obtain
a perceptual time-frequency representation of the video soundtrack, we then
compute the short-time Fourier transform and map the frequency axis ac-
cording to the logarithmic cent-scale. Because human frequency perception is
logarithmic. The resulting time-frequency representation consists of 97 loga-
rithmically spaced frequency bands. Further, we derive the following complex
block-level audio features:

- spectral pattern (1 block = 10 frames, 0.9 percentile statistics): charac-
terize the timbre of the soundtrack by modeling those frequency components
that are simultaneously active. The dynamic aspect of the signal is retained by
sorting each frequency band of a block along the time axis. The block width
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Fig. 1 Processing a time (OX axis) - frequency (OY axis) representation in terms of spectral
blocks (N is the number of blocks).

varies depending on the extracted patterns, which allows capturing temporal
information over different time spans.

- delta spectral pattern (1 block = 14 frames, 0.9 percentile statistics):
captures the strength of onsets. To emphasize onsets, we first compute the
difference between the original spectrum and a copy of the original spectrum
delayed by 3 frames. As with the spectral pattern, each frequency band is then
sorted along the time axis.

- variance delta spectral pattern (1 block = 14 frames, variance statistics):
is basically an extension of the delta spectral pattern and captures the variation
of the onset strength over time.

- logarithmic fluctuation pattern (1 block = 512 frames, 0.6 percentile
statistics): captures the rhythmic aspects of the audio signal. In order to ex-
tract the amplitude modulations from the temporal envelope in each band,
periodicities are detected by computing the Fast Fourier Transform (FFT)
along each frequency band of a block. The periodicity dimension is then re-
duced from 256 to 37 logarithmically spaced periodicity bins.

- spectral contrast pattern (1 block = 40 frames, 0.1 percentile statistics):
roughly estimates the ”tone-ness” of an audio track. For each frame, within
a block, the difference between spectral peaks and valleys in 20 sub-bands is
computed, and the resulting spectral contrast values are sorted along the time
axis in each frequency band.

- correlation pattern (1 block = 256 frames, 0.5 percentile statistics). To
capture the temporal relation of loudness changes over different frequency
bands, we use the correlation coefficients between all possible pairs of frequency
bands within a block. The resulting correlation matrix forms the correlation
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pattern. The correlation coefficients are computed for a reduced frequency
resolution of 52 bands.

These audio features in combination with a Support Vector Machine (SVM)
classifier constitute a highly efficient automatic music classification system.
At the 2010 Music Information Retrieval Evaluation eXchange, this approach
ranked first in automatic music genre classification [20]. However, the proposed
approach has not yet been applied to video genre classification.

3.2 Temporal structure descriptors

Temporal descriptors are derived using a classic confirmed approach, that is,
analysis of the shot change frequency [21]. Unlike existing approaches, we refine
the assessment of the action level on the basis of human perception.

One of the main factors contributing to the success of temporal descriptors
is an accurate preceding temporal segmentation [28]. First, we detect both cuts
and gradual transitions. Cuts are detected by means of an adaptation of the
histogram-based approach proposed in [22]; fades and dissolves are detected
using a pixel-level statistical approach [23] and the analysis of fading-in and
fading-out pixels [24], respectively. Further, we compute the following descrip-
tors:

- rhythm: capture the movie’s tempo of visual change, we compute the rel-
ative number of shot changes occurring within a time interval of T = 5s,
denoted ζT . Then, the rhythm is defined as the movie average shot change
ratio, v̄T = E{ζT }.

- action: We aim to define two opposite situations: video segments with high
action content (called ”hot action”, e.g., fast changes, fast motion, visual ef-
fects) with ζT > 3.1, and video segments with low action content (i.e., con-
taining mainly static scenes) with ζT < 0.6. These thresholds were determined
experimentally using user ground truth. A group of ten people was asked to
manually browse the content of several TV movies and identify, if possible,
frame segments (i.e., intervals [frameA;frameB]) which fall into the two ac-
tion categories mentioned. To avoid inter-annotator consistency, each person
annotated different video parts. For each manually labeled action segment,
we computed the mean shot change ratio, v̄T , to capture the corresponding
changing rhythm. Then we computed the average and standard deviation of
v̄T over all segments within each action category. Using this information as
ground truth, we determine ζT intervals for each type of action content as
[E{v̄T }− σv̄T ;E{v̄T }+ σv̄T ] and thus the two threshold limits (lower limit for
high action and upper limit for low action).

Further, we quantify the action content using two parameters - hot-action
ratio (HA) and low-action ratio (LA), determined by:

HA =
THA

Ttotal

, LA =
TLA

Ttotal

(1)
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where THA and TLA represent the total length of hot and low action segments,
respectively, and Ttotal is the movie total length.

- gradual transitions ratio: Since high numbers of gradual transitions are
generally related to a specific video content we compute:

GT =
Tdissolves + Tfade−in + Tfade−out

Ttotal

(2)

where TX represents the total duration of all gradual transitions of type X .
This provides information about editing techniques which are specific to a
genre, such as movies or commercial clips.

3.3 Color descriptors

Color information is an important source for describing visual content. Most
of the existing color-based genre classification approaches are limited to using
intensity-based parameters or generic low-level color features such as average
color differences, average brightness, average color entropy [21], variance of
pixel intensity, standard deviation of gray level histograms, percentage of pixels
with saturation above a certain threshold [29], lighting key [30], object color,
and texture.

We propose a more sophisticated strategy which addresses the perception
of color content [33]. A simple and efficient way to accomplish this is using
color names; associating names with colors allows everyone to create a mental
image of a given color or color mixture. We project colors onto a color naming
system, and color properties are described using statistics of color distribution,
elementary hue distribution, color visual properties (e.g., percentage of light
colors, warm colors, saturated colors), and relationships between colors (adja-
cency and complementarity). Prior to parameter extraction, we use an error
diffusion scheme to project colors onto a more manageable color palette - the
non-dithering 216 color Webmaster palette (an efficient color naming system).
Colors are represented by the following descriptors:

- global weighted color histogram is computed as the weighted sum of
each shot color histogram:

hGW (c) =
M
∑

i=0





1

Ni

Ni
∑

j=0

h
j
shoti

(c)



 ·
Tshoti

Ttotal

(3)

where M is the total number of video shots, Ni is the total number of the
retained frames for shot i (we use temporal sub-sampling), hj

shoti
is the color

histogram of frame j from shot i, c is a color index from the Webmaster palette
(we use color reduction), and Tshoti is the length of shot i. The longer the shot,
the more important its contribution to the global histogram of the movie.
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- elementary color histogram: describes the distribution of elementary
hues in the sequence:

hE(ce) =

215
∑

c=0

hGW (c)|Name(ce)⊂Name(c) (4)

where ce is an elementary color from the Webmaster color dictionary (colors
are named according to color hue, saturation, and intensity), and Name()
returns a color’s name from the palette dictionary.

- color properties: We define several color ratios to describe color properties.
For instance, the light color ratio, Plight, reflects the percentage of bright colors
in the movie:

Plight =

215
∑

c=0

hGW (c)|Wlight⊂Name(c) (5)

where c is a color whose name contains one of the words defining bright-
ness, and Wlight ∈ {”light”, ”pale”, ”white”}. Using the same reasoning and
keywords specific to each property, we define dark color ratio (Pdark), hard
saturated color ratio (Phard), weak saturated color ratio (Pweak), warm color
ratio (Pwarm) and cold color ratio (Pcold).

Additionally, we capture movie color richness with two parameters: color
variation, Pvar , which is the number of significantly different colors, and color
diversity, Pdiv, defined as the number of significantly different color hues [33].

- color relationship: we compute Padj , the number of perceptually similar
colors in the movie and Pcompl, the number of perceptually opposite color
pairs.

This level of description provides several advantages: the globally weighted
color histogram, hGW , extends the definition of static image histograms by
taking into account the video temporal structure. Values describe percent-
ages of colors appearing during the entire sequence, which provides a global
color signature of the sequence. Further, with the elementary color histogram,
hE , we provide a projection of color to pure spectrum colors (hues), thus dis-
regarding the saturation and intensity information. This mechanism ensures
invariance to color fluctuations (e.g., illumination changes) and provides in-
formation about predominant hues.

Color property and color relationship ratios provide a more perceptual
analysis of the color distribution by quantifying dark-light, warm-cold, satu-
rated and perceptually similar (adjacent) - opposite (complementary) colors.
Finally, color variability and diversity provide information on how much vari-
ability is in the color palette of a movie and its basic hues. For instance, the
presence of many diverse colors may signify more vivid sequences.

4 Relevance feedback

Following this content description methodology, we investigated the potential
use of Relevance Feedback (RF) techniques in bridging the inherent semantic
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gap that results from the automatic nature of the annotation process. Globally,
a typical RF scenario can be formulated thus: for a certain retrieval query, a
user provides feedback by marking the results as relevant or non-relevant.
Then, the system computes a better representation of the information needed
based on this ground truth, and retrieval is further refined. This process can
go through one or more such iterations [35].

In the literature, many approaches have been investigated. One of the earli-
est and most successful relevance feedback algorithms is the Rocchio algorithm
[36]. It updates the query features by adjusting the position of the original
query in the feature space according to the positive and negative examples
and their associated importance factors. Another example is the Feature Rel-
evance Estimation (FRE) approach [38], which assumes for a given query that
a user may consider some specific features more important than others. Ev-
ery feature is given an importance weight such that features with greater
variance have lower importance than elements with smaller variations. More
recently, machine learning techniques have been introduced to relevance feed-
back approaches. Some of the most successful techniques use Support Vector
Machines [39], classification trees, such as Decision Trees [40], Random Forest
[42] or boosting techniques, such as AdaBoost [41]. The relevance feedback
problem can be formulated either as a two-class classification of the negative
and positive samples or as a one-class classification problem (i.e., separating
positive samples from negative samples).

We propose an RF approach that is based on Hierarchical Clustering (HC)
[37]. A typical agglomerative HC strategy starts by assigning one cluster
to each object in the feature space. Then, similar clusters are progressively
merged based on the evaluation of a specified distance metric. By repeating
this process, HC produces a dendrogram of the objects, which may be useful for
displaying data and discovering data relationships. This clustering mechanism
can be very valuable in solving the RF problem by providing a mechanism to
refine the relevant and non-relevant clusters in the query results. A hierarchical
representation of the similarity between objects in the two relevance classes
allows us to select an optimal level from the dendrogram which provides a
better separation of the two than the initial retrieval.

The proposed hierarchical clustering relevance feedback (HCRF) is based
on the general assumption that the video content descriptors provide sufficient
representative power that, within the first window of retrieved video sequences,
there are at least some videos relevant to the query that can be used as positive
feedback. This can be ensured by adjusting the size of the initial feedback
window. Also, in most cases, there is at least one non-relevant video that can
be used as negative feedback. The algorithm comprises three steps: retrieval,
training, and updating.

Retrieval. We provide an initial retrieval using a nearest-neighbor strategy.
We return a ranked list of the NRV videos most similar to the query video
using the Euclidean distance between features. This constitutes the initial RF
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window. Then, the user provides feedback by marking relevant results, which
triggers the actual HCRF mechanism.

Training. The first step of the RF algorithm consists of initializing the clus-
ters. At this point, each cluster contains a single video from the initial RF
window. Basically, we attempt to create two dendrograms, one for relevant
and one for non-relevant videos. For optimization reasons, we use a single
global cluster similarity matrix for both dendrograms. To assess similarity, we
compute the Euclidean distance between cluster centroids (which, compared
to the use of min, max, and average distances, provided the best results). Once
we have determined the initial cluster similarity matrix, we attempt to merge
progressively clusters from the same relevance class (according to user feed-
back) using a minimum distance criterion. The process is repeated until the
number of remaining clusters becomes relevant to the video categories in the
retrieved window (regulated by a threshold τ).

Updating. After finishing the training phase, we begin to classify the next
videos as relevant or non-relevant with respect to the previous clusters. A
given video is classified as relevant or not relevant if it is within the minimum
centroid distance to a cluster in the relevant or non-relevant video dendrogram.

Algorithm 1 Hierarchical Clustering Relevance Feedback.
Nclusters ← NRV ; clusters← {C1, C2, ..., CNclusters

};
for i = 1→ Nclusters do

for j = i→ Nclusters do

compute sim[i][j];
sim[j][i]← sim[i][j];

end for

end for

while (Nclusters ≥ τ) do

{mini,minj} = argmini,j |Ci,Cj∈{same relevance class}(sim[i][j]);
Nclusters ← Nclusters − 1;
Cmin = Cmini

∪ Cminj
;

for i = 1→ Nclusters do

compute sim[i][min];
end for

end while

TP ← 0; current video← NRV + 1;
while ((TP ≤ τ1) ‖ (current video < τ2)) do

for i = 1→ Nclusters do

compute sim[i][current video];
end for

if (current video is classified as relevant) then

TP ← TP + 1;
end if

current video← current video+ 1;
end while

The entire RF process can be repeated if needed (e.g., if retrieval per-
formance is still low) by acquiring new relevance feedback information from
the user. Algorithm 1 summarizes the steps involved. The following notations
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were used: NRV is the number of sequences in the browsing window, Nclusters

is the number of clusters, sim[i][j] denotes the distance between clusters Ci

and Cj (i.e., centroid distance), τ represents the minimum number of clusters
which triggers the end of the training phase (set to a quarter of the number
of sequences in a browsing window), τ1 is the maximum number of searched
videos from the database (set to a quarter of the total number of videos in
the database), τ2 is the maximum number of videos that can be classified as
positive (set to the size of the browsing window), TP is the number of videos
classified as relevant, and current video is the index of the currently analyzed
video.

The main advantages of the proposed HCRF approach are implementation
simplicity and speed because it is computationally more efficient than other
clustering techniques, such as SVMs [39] (which also motivated the choice of
HC as clustering method). Further, unlike most RF algorithms (e.g., FRE
[38] and Rocchio [36]), it does not modify the query or the similarity. The
remaining retrieved videos are simply clustered according to class label. HC
has previously been used in RF but implemented differently. For instance,
[43] proposed the QCluster algorithm for image retrieval. It generates a multi-
point query to create a hierarchy of clusters followed by use of a Bayesian
classification function. In our approach, we simply exploit the dendrogram
representation of the two relevance classes. Experimental results are presented
in Section 5.3.

5 Experimental results

Validation of the proposed content descriptors was carried out in the context
of the MediaEval 2011 (Benchmarking Initiative for Multimedia Evaluation)
Video Genre Tagging Task [2]. It addresses automatic categorization of web
video genres from the blip.tv media platform (see http://blip.tv/).

The test data set consisted of 2375 sequences (around 421 hours of video
footage) labeled according to 26 video genre categories (the numbers in brack-
ets are the numbers of available sequences): ”art” (66), ”autos and vehi-

cles” (36), ”business” (41), ”citizen journalism” (92), ”comedy” (35), ”con-
ferences and other events” (42), ”documentary” (25), ”educational” (111),
”food and drink” (63), ”gaming” (41), ”health” (60), ”literature” (83), ”movies

and television” (77), ”music and entertainment” (54), ”personal or auto-

biographical” (13), ”politics” (597), ”religion” (117), ”school and education”
(11), ”sports” (117), ”technology” (194), ”environment” (33), ”mainstream

media” (47), ”travel” (62), ”video blogging” (70), ”web development and sites”
(40) and ”default category” (248, comprises movies that cannot be assigned to
any of the previous categories). For more details on genre categories see [2].

The main challenge in classifying these videos lies in the high number of
different genres with which to cope. Also, each genre category has a high va-
riety of video material, which makes training difficult. Finally, video content
available on web video platforms is typically video reports, and differs from
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art: nArt Forum Berli autos: Joe's 2009 Geneva comedy: Sassy Kids food: dCumin sala

gaming: Arkham Asylum literature: Aaron Lansky music: JON HAMMOND Band

politics: Oil Spill Lawsreligion: The Boyle Lecturevideoblogging: Christian travel: Indie Travel

web: Ruby for Newbies

BronxTalk | Oct. 10, 2011 Lawrence Lessig Student Elections Turn Violent Governor Tomblin Whio?

Fig. 2 Image examples of several video genres. The bottom-row images exemplify the di-
versity of the ”politics” category (source: blip.tv).

classic TV footage. Video material is usually assembled in a news broadcast-
ing style, which means genre-specific content is inserted periodically into a
dialogue or interview scene. Figure 2 illustrates these aspects.

Prior to video processing, we introduced a basic normalization step by
converting all sequences to a reference video format. For genre categorization,
each movie was represented by a feature vector which corresponds to the pre-
viously presented content descriptors. This yielded 9448 values for the audio
descriptors and 245 for the color-action parameters, resulting in a total di-
mensionality of 9693 values. Data fusion was carried out using simple vector
concatenation, which corresponds to early fusion approaches [34]. Below we
describe each experiment in detail.

5.1 Classification perspective

Experimental setup. In the first experiment, we addressed video genre cat-
egorization in terms of machine learning techniques. We attempted to regroup
the data according to genre-related clusters. For classification we used the
Weka [19] environment, which provides a great selection of existing machine
learning techniques. We tested methods ranging from simple Bayes to function-
based, rule-based, lazy classifiers and tree approaches (from each category
of methods, we selected the most representatives). Method parameters were
tuned on the basis of preliminary experiments.
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As the choice of training data may distort the accuracy of the results, we
used a cross-validation approach. We split the data set into training and test
sets, using values ranging from 10% to 90% for the percentage split. For part
of the training data classification was repeated for all possible combinations
between training and test sets in order to shuffle all sequences. Additionally,
we tested different combinations of descriptors.

To assess performance, we used several measures. At the genre level, we
computed average precision (P ) and recall (R) (averaged over all experiments
for a given percentage split), which account for the number of false classifica-
tions and misclassifications, respectively:

P =
TP

TP + FP
, R =

TP

TP + FN
(6)

where TP , FP , and FN represent the average numbers of true positives, false
positives, and false negatives, respectively. As a global measure, we computed
Fscore and average correct classification (CD):

Fscore = 2 ·
P ·R

P +R
, CD =

NGD

Ntotal

(7)

where NGD is the average number of correct classifications, and Ntotal is the
number of test sequences.

Discussion of the results. The most accurate classification was obtained
by using all audio-visual descriptors in combination. For reasons of brevity,
we present only these results. Figure 3 shows the overall average Fscore and
average correct classification CD for a selection of seven machine learning
techniques (those providing the most significant results).

The global results are very promising considering the high difficulty of this
classification task. The highest average Fscore is 46.3%, while the best aver-
age correct classification is 55% (out of 475 test sequences 261 were correctly
labeled, obtained for 80% training data). The most accurate classification tech-
nique proved to be an SVM with linear kernel, followed very closely by Func-
tional Trees (FT), and then k-NN (with k=3), Random Forest trees, Radial
Basis Function (RBF) Network, J48 decision tree, and finally Bayes Network
(see Weka [19]).

The most interesting results, however, were obtained at genre level. Due
to the high semantic content, not all genres can be classified correctly with
audio-visual information. We sought to determine which categories are better
suited for this approach. Figure 4 shows the genre average Fscore achieved by
the linear SVM and FT trees.

The best performance was obtained for the following genres (we present re-
sults for a 50% percent split and give the highest value): ”literature” (Fscore =
83%, highest 87%) and ”politics” (Fscore = 81%, highest 84%), followed
by ”health” (Fscore = 78%, highest 85%), ”citizen journalism” (Fscore =
65%, highest 68%), ”food and drink” (Fscore = 62%, highest 77%), ”web
development and sites” (Fscore = 63%, highest 84%), ”mainstream media”
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Fig. 3 Overall average Fscore (see eq. 7) and overall average correct classification CD (see
eq. 7) achieved by various machine learning techniques using all audio-visual descriptors.
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(Fscore = 63%, highest 74%), ”travel” (Fscore = 57%, highest 60%), ”technol-
ogy” (Fscore = 53%, highest 56%). Less successful performance was achieved
for genres such as ”documentary” (Fscore = 7% which is also the highest),
”school” (Fscore = 10%, highest 22%) or ”business” (Fscore = 9%, highest
14%).
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Fig. 5 Average precision vs. recall (see eq. 6) achieved by SVM (linear kernel) and Func-
tional Trees (FT) using all audio-visual descriptors and for various amounts of training data
(percentage split from 10% to 90%).

Globally, classification performance increases with the amount of training
data. However, for some genres, due to the large variety of video materials
(see Figure 2), increasing the number of examples may result in overtraining
and thus in reduced classification performance. It can be seen in Figure 3
that classification performance decreases as the proportion of training data
increases (e.g., SVM linear for 90% training data). A clear difference between
FT and SVM is visible at genre level. Globally, the SVM tends to perform
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better on a reduced training set, while the FT tends to be superior for higher
amounts of training data (e.g., training data > 70%, see min-max intervals in
Figure 4). This can also be observed for genre precision and recall.

Figure 5 shows genre average precision against recall for various percentage
splits (ranging from 10% to 90%). The highest average precision, and thus the
lowest number of false classifications, was achieved for the genres ”literature”
(P = 93% with FT), ”health” (P = 90.9% with FT), ”web development and
sites” (P = 87% with FT), ”the mainstream media” (P = 85.3% with SVM),
”politics” (P = 82.9% with SVM), ”food and drink” (P = 79% with FT),
”comedy” (P = 75% with FT), ”citizen journalism” (P = 73% with SVM),
”movies and television” (P = 69% with FT) and ”sports” (P = 67% with
FT). The highest average recall was obtained for ”literature” (R = 91.3% with
SVM), ”politics” (R = 86.6% with FT), ”the mainstream media” (R = 87.5%
with FT), ”web development and sites” (R = 81.3% with FT), ”food and
drink” (R = 79.2% with FT) and ”travel” (R = 75% with FT). Note that
most of these values were obtained for the highest amount of training data
(i.e., 90%).

5.2 Retrieval perspective

Experimental setup. In this experiment, we assessed the classification per-
formance of the proposed descriptors in terms of an information retrieval sys-
tem. We present the results obtained for the MediaEval 2011 Video Genre
Tagging Task [2]. The challenge was to develop a retrieval mechanism that
works with all 26 genre categories. Each participant was provided with a de-
velopment set consisting of 247 sequences, unequally distributed with respect
to genre. Some genre categories were represented with very few (even just one
or two) examples. This initial set was to serve as a reference point for devel-
oping the proposed solution. The participants were encouraged to build their
own training sets if required by their approach. Consequently, to provide a
consistent training data set for the classification task, we extended the data
set to up to 648 sequences. Additional videos were retrieved from the same
source (blip.tv), using genre-related keywords (we checked for duplicates in the
official development and test sets). The final retrieval task was performed on
a test set consisting of 1727 sequences. In this case, the training-classification
steps are to be performed only once. Up to 10 teams competed at this task,
each one submitting up to 5 different runs (3 were restricted to using only tex-
tual descriptors extracted from speech transcripts, user tags, and metadata).
A detailed overview of the results was presented in [2].

In our case, the retrieval results were obtained using a binary ranking
in which the maximum relevance of 1 is associated with the genre category
into which the document was classified, while other genres have 0 relevance.
To assess performance, we used the overall Mean Average Precision (MAP)
as defined by TRECVid [3] (also see trec eval scoring tool at http://trec.
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nist.gov/trec_eval/):

MAP =
1

|Q|
·

|Q|
∑

j=1

1

mj

·

mj
∑

k=1

P (Rj,k) (8)

where Q = {q1, ..., q|Q|} denotes a set of queries qj which are represented in the
data set by {d1, ..., dmj

} relevant documents, Rjk is the set of ranked retrieval
results from the top result to document dk, and P () is the precision (see eq.
6). When a relevant document is not retrieved at all, the precision value in the
above equation is taken to be 0.

Discussion of the results. For classification we used the approach providing
the most accurate results, namely the SVM with a linear kernel. In Table 1
we compare our results with several other approaches using various modali-
ties of the video, from textual information (e.g., speech transcripts, user tags,
metadata) to audio-visual1.

Our descriptors achieved an overall MAP of up to 12% (see team RAF in
Table 1). These were the best results obtained using audio-visual information
alone. Use of descriptors such as cognitive information (face statistics), tempo-
ral information (average shot duration, distribution of shot lengths) [31], audio
(MFCC, zero-crossing rate, signal energy), color (histograms, color moments,
autocorrelogram - denoted autocorr.), and texture (co-occurrence - denoted
co-occ., wavelet texture grid, edge histograms) with SVM resulted in a MAP
of less than 1% (see team KIT in Table 1), while clustered SURF features and
SVM achieved a MAP of up to 9.4% (see team TUB in Table 1). We achieved
better performance even compared to some classic text-based approaches, such
as the Term Frequency-Inverse Document Frequency (TF-IDF - MAP 9.8%,
see team UAB in Table 1) and the Bag-of-Words (MAP 5.5%, see team SINAI
in Table 1) approaches. Compared to visual information, audio descriptors
seem to provide better discriminative power for this task.

It must be noted that the results presented in Table 1 cannot be definitive,
as the classification approaches were not trained and set up strictly compa-
rably. Teams were allowed to access other sources of information than those
proposed in the competition. For instance, we used 648 sequences for training,
whereas team KIT used up to 2514 sequences. Most text-based approaches
employed query expansion techniques (e.g., Wordnet - see http://wordnet.

princeton.edu/ and Wikipedia - see http://en.wikipedia.org). However,
these results not only provide a (crude) performance ranking, but also illus-
trate the difficulty of this task.

The most efficient retrieval approach remains the inclusion of textual infor-
mation, as it provides a higher semantic level of description than audio-visual
information. The average MAP achieved by including textual descriptors is
around 30% (e.g., see team TUB in Table 1). Retrieval performance is boosted
by including information such as movie names, movie ID from blip.tv, or the

1 the following notations were adopted: Terrier IR is an information retrieval system, see
http://terrier.org/; Delicious is a social tagging site, see http://del.icio.us/.
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Table 1 Comparative results: MediaEval benchmarking [2] (selective results).

descriptors modality method decision MAP team

speech transcripts text
Support Vector
Machines

ranked list 11.79% LIA

speech transcripts,
metadata, user tags

text
Bag-of-Words
+ Terrier IR

ranked list 11.15% SINAI

speech transcripts text Bag-of-Words ranked list 5.47% SINAI

speech transcripts,
metadata, user tags

text
TF-IDF +
cosine dist.

binary 9.4% UAB

speech transcripts,
Delicious tags,
metadata

text
BM25F [32] +
Kullback -
Leibler diverg.

ranked list 11.11% UNED

metadata text
Negative
multinomial
diverg.

ranked list 39.37% TUD

MFCC, zero cross.
rate, signal energy

audio multiple SVMs binary 0.1% KIT

proposed audio
SVM with
linear kernel

binary 10.29% RAF

clustered SURF visual
Visual-Words
+ SVM with
RBF kernel

binary 9.43% TUB

hist., moments,
autocorr., co-occ.,
wavelet, edge hist.

visual multiple SVMs binary 0.35% KIT

cognitive (face
statistics [31])

visual multiple SVMs binary 0.1% KIT

structural (shot
statistics [31])

visual multiple SVMs binary 0.3% KIT

proposed visual
SVM with
linear kernel

binary 3.84% RAF

color, texture, aural,
cognitive, structural

audio,
visual

multiple SVMs binary 0.23% KIT

proposed
audio,
visual

SVM with
linear kernel

binary 12.08% RAF

clustered SURF,
metadata

visual,
text

Naive Bayes,
SVM + serial
fusion

binary 30.33% TUB

username of the video uploader; in this particular case, the reported MAP was
up to 56% (which is also the highest obtained).

In the following experiment we sought to prove that, notwithstanding the
superiority of text descriptors, audio-visual information also has great poten-
tial in classification tasks, but may benefit from additional help. To this end,
we investigated the use of relevance feedback.
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5.3 Relevance feedback perspective

Experimental setup. In the final experiment, we attempted to enhance re-
trieval by employing the proposed relevance feedback scheme as described in
Section 4. For tests, we used the entire data set: all 2375 sequences. Each
sequence was represented by the proposed audio-visual descriptors. The user
feedback was simulated automatically from the known class membership of
each video (i.e., the genre labels). Compared to real user feedback, this has
the advantage of providing a fast and extensive simulation framework, which
otherwise could not be achieved due to physical constraints (e.g., availability
of a significant number of users) and inherent human errors (e.g., indecision,
misperception). We use only one feedback session. Tests were conducted for
various sizes of the user browsing window.
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Fig. 6 Precision - recall curves obtained with relevance feedback for different size browsing
windows (for visualization purposes, we limited OX to 0.5).

Discussion of the results. Figure 6 compares the precision - recall curves
obtained with the proposed approach, hierarchical clustering relevance feed-
back (HCRF, see Section 4), with those of several other approaches, namely
Rocchio [36], Feature Relevance Estimation (FRE) [38] and Support Vector
Machines [39]. The proposed HCRF provides an improvement in retrieval, par-
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ticularly for small browsing windows (e.g., 20, 30 video sequences, see the red
line in Figure 6). With increasing window size, all methods tend to converge
at some point to similar results.

Table 2 summarizes the overall retrieval MAP (see also eq. 8) estimated
as the area under the uninterpolated precision-recall curve. For the proposed
HCRF, the MAP ranges from 41.8% to 51.3%, which is an improvement over
the other methods of at least a few percents. Also, it can be seen that rel-
evance feedback proves to be a promising alternative for improving retrieval
performance since it provides results close to those obtained with high-level
textual descriptors (see Table 1).

Table 2 MAP obtained with Relevance Feedback

RF method
20 seq.
window

30 seq.
window

40 seq.
window

50 seq.
window

Rocchio 46.8% 43.84% 42.05% 40.73%

FRE 48.45% 45.27% 43.67% 42.12%

SVM 47.73% 44.44% 42.17% 40.26%

proposed 51.27% 46.79% 43.96% 41.84%

6 Conclusions

We have addressed web video categorization using audio-visual information.
We have proposed content descriptors which exploit audio, temporal structure,
and color content and tested their power in solving this task. Experimental
validation was carried out in the context of the MediaEval 2011 Video Genre
Tagging Task [2], which addressed a real-world scenario - categorization of up
to 26 video genres from the blip.tv media platform (421 hours of video footage).
The tests were conducted both in the context of a classification system and as
part of an information retrieval approach.

On classification, not all genres can be retrieved using audio-visual infor-
mation. The use of audio-visual information may be highly efficient in de-
tecting particular genres, for instance, in our case ”literature” (we obtain
Fscore = 87%), ”politics” (Fscore = 84%), and ”health” (Fscore = 85%), and
less successful for others, such as ”school” (Fscore = 22%), and ”business”
(Fscore = 14%). One can envisage a classification system which adapts the
choice of parameters to the target categories, for instance, using audio-visual
descriptors for genres which are best detected with this information, using text
for text-related categories, and so on.

In retrieval, the proposed descriptors achieved the best results of all audio-
visual descriptors. They provided better retrieval performance than other de-
scriptors such as cognitive information (face statistics), temporal information
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(average shot duration, distribution of shot lengths), audio (MFCC, zero-
crossing rate, signal energy), color (histograms, color moments, autocorrel-
ogram) and texture (co-occurrence, wavelet texture grid, edge histograms),
and excelled even compared to some classic text-based approaches, such as
the Term Frequency-Inverse Document Frequency (TF-IDF) approach. The
results are, however, not definitive because different training data and differ-
ent classifier setups were used. Text-based descriptors still achieve the best
results. To address this, we designed a relevance feedback approach which al-
lows boosting the performance close to that obtained with high-level semantic
textual information (in this particular case, we achieve a MAP of up to 51%).

The main limitation of this approach, which is common to all ad-hoc genre
categorization approaches, lies in the detection of genre related content. The
proposed categorization system is limited to detect genre-related patterns,
globally, such as identifying episodes from a series. It is not capable of detect-
ing genre related segments within same sequence. Therefore, to provide good
classification performance, each type of video material must be represented
properly by the training set.

Future improvements will consist mainly of addressing sub-genre catego-
rization and considering the constraints of very large scale approaches (millions
of sequences and dozens of genre concepts). Also, we consider investigating the
benefits to using relevance feedback with text-based retrieval.
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