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Abstract As of today, most movie recommendation services base their rec-
ommendations on collaborative filtering (CF) and/or content-based filtering
(CBF) models that use metadata (e.g., genre or cast). In most video-on-
demand and streaming services, however, new movies and TV series are con-
tinuously added. CF models are unable to make predictions in such a scenario,
since the newly added videos lack interactions – a problem technically known
as new item cold start (CS). Currently, the most common approach to this
problem is to switch to a purely CBF method, usually by exploiting textual
metadata. This approach is known to have lower accuracy than CF because
it ignores useful collaborative information and relies on human-generated tex-
tual metadata, which are expensive to collect and often prone to errors. User-
generated content, such as tags, can also be rare or absent in CS situations.
In this paper, we introduce a new movie recommender system that addresses
the new item problem in the movie domain by (i) integrating state-of-the-art
audio and visual descriptors, which can be automatically extracted from video
content and constitute what we call the movie genome; (ii) exploiting an effec-
tive data fusion method named canonical correlation analysis (CCA), which
was successfully tested in our previous works [28,22], to better exploit comple-
mentary information between different modalities; (iii) proposing a two-step
hybrid approach which trains a CF model on warm items (items with inter-
actions) and leverages the learned model on the movie genome to recommend
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cold items (items without interactions). Experimental validation is carried out
using a system-centric study on a large-scale, real-world movie recommenda-
tion dataset both in an absolute cold start and in a cold to warm transition;
and a user-centric online experiment measuring different subjective aspects,
such as satisfaction and diversity. Results show the benefits of this approach
compared to existing approaches.

Keywords movie recommender systems, cold start, warm start, semi-cold
start, new item, multimedia features, content-based, audio descriptors, visual
descriptors, multimodal fusion, hybrid recommender system, feature weight-
ing, collaborative-enriched content-based filtering, canonical correlations
analysis

1 Introduction

A dramatic rise in the generation of video content has occurred in recent years.
According to Cisco, the largest networking company across the globe, by 2020
more than 75% of the world’s mobile data traffic will be video, or even 80%
when video and audio data are considered together [1]. This rise has been
fueled by online social network users who upload/post a staggering amount of
user-generated video on a daily basis. For instance, as of 2018, YouTube1 users
upload over 400 hours of video every minute. This translates to about 3 years
of non-stop watching in order to consume all videos uploaded to YouTube in
a single hour. Similarly, Instagram2 users post nearly 70 million photos and
videos each day [109].

In this context, video recommender systems play an important role in help-
ing users of online streaming services, as well as of social networks, cope with
this rapidly increasing volume of videos and provide them with personalized ex-
periences. Nevertheless, the growing availability of digital videos has not been
fully accompanied by comfort in their accessibility via video recommender sys-
tems. The causes of this problem are two fold: (i) the type of recommendation
models in service today, which are heavily dependent on usage data (in par-
ticular, implicit or explicit preference feedback) and/or metadata (e.g., genre
and cast associated with the videos) (cf. Section 1.1), and (ii) the nature of
video data, which are information intensive when compared to other media
types, such as music or images (cf. Section 1.2). In the following article, we
analyze each of these dimensions. Throughout this paper, we will use a number
of abbreviations, which, for convenience are summarized in Table 1.

1.1 New item cold-start recommendation in the movie domain

To date, collaborative filtering (CF) methods [61] lie at the core of most
real-word movie recommendation engines, due to their state-of-the-art accu-
racy [80,111]. In most video-streaming services, however, new movies and TV

1 https://www.youtube.com/
2 https://www.instagram.com/

https://www.youtube.com/
https://www.instagram.com/
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Table 1: List of abbreviations used throughout the paper.

Abbreviation Term

MM Multimedia

RS Recommender systems

VRS Video recommender systems

MRS Movie recommender systems

MMRS Multimedia recommender systems

CS Cold start

WS Warm start

AVF Aesthetic visual features

BLF Block-level features

CBF Content-based filtering

CF Collaborative filtering

CF-MMRS Collaborative filtering multimedia recommender system

CB-MMRS Content-based multimedia recommender system

CA-MMRS Context-aware multimedia recommender system

BPR Bayesian personalized ranking

KNN K-Nearest Neighbor

CFeCBF Collaborative-filtering enriched content-based filtering

series are continuously added. CF models are not capable of providing mean-
ingful recommendations when items in the catalogue contain few interactions,
a problem commonly known as the cold start (CS) problem. The most severe
case of CS is when new items are added that lack any interactions, techni-
cally known as the new item CS problem.3 In such a situation, CF models
are completely unable to make predictions. As such, these new items are not
recommended, go unnoticed by a large part of the user community, and remain
unrated, creating a vicious circle in which a set of items in the RS is left out
of the vote/recommendation process [11]. Being able to provide high-quality
recommendations for cold items has several advantages. Firstly, it will increase
the novelty of the recommendations, which is a highly desirable property and
inherent in the user-centric and business-centric goals of RS, i.e., the discovery
of new content and the increase of revenues [5,69]. Secondly, providing good
new movie recommendations will allow enough interactions/feedbacks to be
collected in a brief amount of time enabling effective CF recommendation. De-
spite previous efforts, the new item CS problem remains far from being solved
in the general case, and most existing approaches suffer from it [11,116,113].

Currently, the most common approach to counteracting the new item CS
problem is to switch to a pure CBF [44,75] method by using additional at-
tribute content for items, usually by resorting to metadata provided in textual
form [71]. This approach is known to have lower accuracy than CF because

3 Note that videos without interactions can also be old videos that have been never been
watched by a user.
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it ignores potentially useful collaborative information and typically relies on
human-generated textual metadata, which are often noisy, expensive to collect,
and sparse. More importantly, extra information for cold items is not always
available on the web (especially in user-generated form), even if it is avail-
able in abundance for warm items [114]. In addition, given the unstructured
or semi-structured nature of metadata, they often require complex natural
language processing (NLP) techniques for pre-processing, e.g., syntactic and
semantic analysisor topic modeling [4].

Many approaches have been proposed to address the new item CS issue,
mainly based on hybrid CF and CBF models [68,14,98,42]. Most recent work
relies on machine learning to combine content and collaborative data. We focus
on feature weighting rather than on other types of hybrids (e.g., joint matrix
factorization) because we aim to build a hybridization strategy that can be
easily applied to a CBF model. For instance, the authors in [43] proposed
a method to map item features into the item embeddings learned in a ma-
trix factorization algorithm, while the authors in [95] defined a probabilistic
model trained via expectation minimization. Another example is [98], where
the authors proposed a feature weighting model that learns feature weight by
optimizing the ranking of the recommendations over the user interactions for
warm items.

Addressing this issue, the main contribution of the present work is to im-
prove the current state of the art by presenting a generalized, two-step machine
learning approach to feature weighting and by testing its effectiveness on both
editorial features and state-of-the-art multimedia (MM) descriptors. Hereafter,
for simplicity, we refer to items without interactions as cold items and items
containing interactions as warm items.

1.2 Video as an information-intensive multimodal media type

When we watch a movie, we can effortlessly register many details conveyed to
us through different multimedia channels — in particular, the audio and visual
channels. As a result, the perception of a film in the eyes of viewers is influ-
enced by many factors related not only related to, e.g., the genre, cast, and
plot, but also according to the overall film style [12]. These factors affect the
viewer’s experience. For example, two movies may be from the same genre and
director, but they can be different based on the movie style. Consider as an ex-
ample Empire of the Sun and Schindler’s List, both dramatic movies directed
by Steven Spielberg and both describing historical events. However, they are
completely different in style, with Schindler’s List shot like a documentary in
black and white, while Empire of the Sun is shot using bright colors and makes
heavy use of special effects. Although these two movies are similar with respect
to traditional metadata (e.g., director, genre, year of production), their differ-
ent styles are likely to affect the viewers’ feelings and opinions differently [27].
In fact, the film story is first created by the author and the comprehension
of the cinematographical language by the spectator reshapes the story [41].
The notion of story in a movie depends on semantic content (reflected better
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in metadata) reshaped through stylistic cinematography elements (reflected
better in multimedia content). These discernible characteristics of movie con-
tent meet users’ different information needs.

The extent to which content-based approaches are used, and even the way
“content” is interpreted, varies between domains. While extracting descriptive
item features from text, audio, image, and video content is a well-established
research domain in the multimedia community [65], the recommender system
community has long considered metadata, such as the title, genre, tags, actors,
or plot of a movie, as the single source for content-based recommendation
models, thereby disregarding the wealth of information encoded in the actual
content signals. In order for MRS to make progress in recommending the right
movies to the right user(s), they need to be able to interpret such multimodal
signals as an ensemble and utilize item models that take into account the
maximum possible amount of this information. We refer to such a holistic
description of a movie, taking into account all available modalities, as its movie
genome, since it can be considered the footprint of both content and style [13,
50].4

In this paper, we specifically address the above-mentioned shortcomings
of purely metadata-based MRS by proposing a practical solution for the new
item CS challenge that exploits the movie genome. We set out to answer the
following research questions:

RQ1: Can the exploitation of movie genome describing rich item information
as a whole, provide better recommendation quality compared with traditional
approaches that use editorial metadata such as genre and cast in CS scenarios?

RQ2: Which visual and audio information better captures users’ movie pref-
erences in CS scenarios?

RQ3: Can we effectively leverage past user behavior data on warm items (items
with interactions) to enrich the overall item representation and improve our
ability to recommend cold items when interactions are not available?

The remainder of this article is structured as follows. Section 2 positions
our work in the context of the state of the art and highlights its novel con-
tributions. Section 3 introduces the proposed general content-based recom-
mendation framework. Sections 4 and 5 report on the experimental validation,
namely the experimental setup and parameter tuning, offline experimentation,
and a user study in a web survey, respectively. Section 6 concludes the article
in the context of the research questions and discusses limitations and future
perspectives.

4 Similar to biological DNA composed of long sequences of four letters A, T, C, G referred
to as nucleotides.
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2 State of the art

One main contribution of this work is the introduction of a solution for the new
item CS problem in the multimodal movie domain. In this section, we therefore
review the existing, state-of-the-art approaches in content-based multimedia
recommender systems (Section 2.1) and feature weighting for CS recommender
systems (Section 2.2) and position our contribution (Section 2.3).

2.1 Content-based multimedia recommendation

A multimedia recommendation system is a system that recommends a partic-
ular media type, such as audio, image, video, and/or text, to the users [33,
34]. We therefore organize the state-of-the-art CB-MMRS based on the target
media type, namely: (i) audio recommendation, (ii) image recommendation,
and (iii) video recommendation. In the following subsections, we describe each
of these systems.

2.1.1 Audio recommendation

The most common example of audio recommendation is music recommenda-
tion [94,105]. Over the past several years, a wealth of approaches, including
CF, CBF, context-aware recommenders, and hybrid methods, have been pro-
posed to address this task. An overview of popular approaches can be found
in [93,94]. Perhaps more than in other MM domains, CB recommenders have
attracted substantial interest from researchers in the music domain, not least
due to their superior performance in CS scenarios.

Recent work has proposed deep learning-based CB approaches. For in-
stance, the authors in [85] use a deep convolutional neural network (CNN)
trained on audio features, more precisely, on the log-scaled Mel spectrograms
extracted from 3-second-snippets of the audio, resulting in a latent factor
representation for each song. The authors evaluate their approach for tag pre-
diction and music recommendation using the Million Song Dataset [10]. In
10-fold cross-validation experiments using 50-dimensional latent factors, they
show that the CNN outperforms both metric learning to rank and a multi-
layer perceptron trained on bag-of-words representations of vector-quantized
Mel frequency cepstral coefficients (MFCC) [73] in both tasks.

In contrast to such automatic feature learning approaches, some systems
use human-made annotations of music. Perhaps, the most notable and well-
known is the proprietary Music Genome Project (MGP),5 which is used by
music streaming major Pandora.6 MGP captures various attributes of music
and uses them in a CBF recommender system. These attributes are created by
musical experts who manually annotate songs. Pandora uses up to 450 specific

5 http://www.pandora.com/about/mgp
6 Pandora might also use automatically extracted content (and other) features in their

system, but the MGP is arguable the approach for which Pandora is best known.

http://www.pandora.com/about/mgp
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descriptors per song, such as “aggressive female vocalist”, “prominent backup
vocals”, or “use of unusual harmonies”.

In our approach, we follow a strategy in between these two extremes ( i.e.,
fully automated feature learning by deep learning and pure manual expert an-
notations). The proposed movie genome uses well-established, state-of-the-art
audio descriptors that are semantically more meaningful than deep learned
features, but at the same time do not require a massive number of human
annotators.

2.1.2 Image recommendation

Some interesting use-case scenarios of image recommendation can be men-
tioned in the fashion domain (e.g., recommending clothes) and the cultural
heritage domain (e.g., recommending paintings in museums). For fashion, rec-
ommendation can be performed in two main manners: finding a piece of cloth-
ing that matches a given garment image shown to the system as a visual query
(such as two pairs of jeans which are similar to each other considering their vi-
sual appearance) and finding the clothing, which complements the given query
(such as recommending a pair of jeans that match a shirt). The authors in [78]
propose a CB-MMRS which provides personalized fashion recommendations
by considering the visual appearance of clothes. The main novelty, besides fo-
cusing on this novel fashion recommendation scenario, is examining the visual
appearance of the items under investigation to overcome the CS problem.

The authors of [8] propose a multimedia (image—video—document) rec-
ommender platform to address the cultural heritage domain: in particular, a
recommender system to provide personalized visiting paths to tourists visiting
the Paestum ruins, one of the major Greco-Roman cities in the South of Italy.
The proposed system is able to uniformly combine heterogeneous multimedia
data and to provide context-aware recommendation techniques. This paper
provides interesting insights for building context-aware multimedia systems
using content information, with explicit focus on contextualization. The au-
thors exploit high-level metadata extracted in an automatic or semi-automatic
manner from low-level (signal-level) features and compare it with user prefer-
ences. The main shortcoming of this research is the lack of an experimental
study on a larger multimedia dataset.

Visual descriptors have also been used in restaurant recommendation sys-
tems by the authors of [16], in which images collected from a restaurant-based
social platform were first processed by an SVM-based image classification sys-
tem that used both low-level and deep features and split the images into four
classes, indoor, outdoor, food and drink images, based on the idea that these
different categories of pictures may have different influences on restaurant rec-
ommendation. This content-based approach was used to successfully enhance
the performance of matrix factorization, Bayesian personalized ranking matrix
factorization and FM approaches.

In our approach, we follow a strategy that also recognizes the importance of
low-level content (visual and audio) for movie recommendation and leverages
it for new item CS movie recommendation.
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2.1.3 Video recommendation

As one of the earliest approaches to the problem of video recommendations,
the authors of [110,82,81] propose a video recommender system named “Video
Reach”. Given an online video and related information (query, title, tags and
surrounding text), the system recommends relevant videos in terms of multi-
modal relevance and user feedback. Two types of user feedback are leveraged:
browsing behavior and playback on different portions of the video (the lat-
ter is specific to [81]). These approaches are interesting from the perspective
of using multimodal video content (audio, visual, and textual) and a fusion
scheme based on user behavior. However, they have some limitations as well.
Firstly, according to the properties required by the attention fusion function,
the proposed Video Reach system filters out videos with low textual similarity
to ensure that all videos are more or less relevant and then only calculates
the visual similarity of the filtered videos; this may result in losing impor-
tant information. Secondly, it uses only one type of visual feature, namely
the basic color histogram. Thirdly, an empirical set of weights is chosen to
serve as importance weights in a linear feature/modality fusion; for example,
the textual keywords are given a much higher weight than the visual and au-
ral keywords, without investigating the opposite arrangement. Although the
authors show that this assumption is sufficient to make recommendation via
adjusting weights, it is not clear what effect such an empirical assumption has.

In our approach, we introduce a video recommendation system that lever-
ages all video properties ( i.e., audio, visual, and textual) and an effective fusion
method based on canonical correlation analysis (CCA) to exploit the comple-
mentary information between modalities in order to produce more powerful
combined descriptors. More importantly, we propose an approach for new item
recommendation that leverages the collaborative knowledge about warm items
for the CBF of cold items, using the combined descriptors.

2.2 Feature weighting for cold-start recommender systems

Relying on CBF algorithms to address cold items has two main drawbacks:
firstly, it is limited by the availability and quality of item features, and sec-
ondly, it is difficult to connect the content and collaborative information. One
way to build a hybrid of content and collaborative information is via feature
weighting. We focus on feature weighting rather than on other types of hybrids
because we aim to build a hybridization strategy that can be easily applied
to a CBF model. Feature weighting algorithms can be either embedded meth-
ods, which learn feature weights as part of the model training, or wrapper
methods, which learn weights in a second phase on top of an already available
model. Examples of embedded methods are user-specific feature-based similar-
ity models (UFSM) [7] and factorized bilinear similarity models (FBSM) [98].
Among embedded methods, the main drawbacks are the complex training
phase and a sensitivity to noise due to the strong coupling of features and in-
teractions. UFSM learns a personalized linear combination of similarity func-
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tions, known as global similarity functions for cold-start top-N item recom-
mendations. UFSM can be considered a special case of FM [7,90]. FBSM was
proposed as an evolution of UFSM that aims to discover relations among item
features instead of building user-specific item similarities. The model builds an
item-item similarity matrix which models how how well a feature of an item
interacts with all the features of the second item.

Wrapper methods, meanwhile, rely instead on a two-step approach by
learning feature weights on top of an already available model. An example of
this is least-square feature weights (LFW) [14], which learns feature weights
from a SLIM item-item similarity matrix using a simpler model than FBSM:

sim(i, j) = fTi Dfj (1)

where f is the feature vector of an item and D is a diagonal matrix having
as dimension the number of features. Another example of a wrapper method
is HP3 [9], which builds a hybrid recommender on top of a graph-based col-
laborative model. A generalization of LFW has recently been published by
the authors in [42]. They demonstrate the effectiveness of wrapper methods
in learning from a wider variety of collaborative models and present a com-
parative study of some state-of-the-art algorithms. Their paper further shows
that wrapper methods with no latent factor component (i.e., matrix V, as
in FBSM) tend to outperform others. In our approach, we therefore choose
to adopt this simpler model, as it combines good recommendation quality with
fast training time.

Similar strategies are available for matrix factorization models. Collective
matrix factorization [100] allows the joint factorization of both collaborative
and content data, which is applied in [92] to propose local collective embedding,
a joint matrix factorization that enforces the manifold structure exhibited by
the collective embedding in the content data as well as allowing collabora-
tive interactions to be mapped to topics. An example of a wrapper method
is attribute to feature mapping [43], an attribute-aware matrix factorization
model which maps item features to its latent factors via a two-step approach.
All previous approaches rely on the availability of some descriptors for each
item, which in some cases can be an issue.

Other proposals to address the CS problem make use of other relations
between users or items, i.e., social networks. For example, the authors in [115]
use social tags to enrich the descriptions of items in a user-tag-object tripartite
graph model; while the authors in [76] instead use a social trust network to
enrich the user profile. Another example is [107], where authors analyze the
impact of the connections on the quality of recommendations. While this group
of techniques shows promising results, it is still limited by the fact that obtain-
ing fine-grained and accurate features is a complex and time-consuming task.
Moreover, those other existing relationships might not always be available or
meaningful for the target domain. See [38] for a good and general introduction
to recommendation complicating scenarios (e.g., the CS problem).

In this work, we adopt feature weighting techniques because they have shown
promising results in recent years to the point of becoming the current state of
the art.
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2.3 Contributions of this work

The work at hand builds on foundations and results realized in our previous
work, but considerably extends it. We therefore present in the following our
novel contributions, and connect them to previous work.

In [29,31,26,27,39,17], we proposed a CB-MRS that implements a movie
filter according to average shot length (measure of camera motion), color vari-
ation, lighting key (measure of contrast), and motion (measure of object and
camera motion). The proposed features were originally used in the field of
multimedia retrieval for movie genre classification [89] and have a stylistic na-
ture which is believed to be in accordance with applied media aesthetics [112]
for conveying communication effects and simulating different feelings in the
viewers. For this reason, these features were named mise-en-scène features.

Since full movies can be unavailable, costly or difficult to obtain, in [27]
it was studied whether movie trailers can be used to extract mise-en-scène
visual features. The results indicated that they are indeed correlated with the
corresponding features extracted from full-length movies and that feeding the
features extracted from movie trailers and full movies into a similar CB-MRS
results in a comparable quality of recommendations (both superior to the genre
baseline). The main shortcoming of this work is that it used a small dataset
for evaluation (containing only 167 movies and the corresponding trailers).
Additionally, the number of visual features was limited (only five features,
cf. [89]). Due to these restrictions, the generalizability of our findings in [27]
may be limited; also see Section 6.3 for a discussion of limitations.

In [28,30,25] we specifically addressed the under-researched problem of
combining visual features extracted from movies with available semantic infor-
mation embedded in metadata or collaborative data available in users’ interac-
tion patterns in order to improve offline recommendation quality. To this end,
for multimodal fusion (i.e., fusing features from different modalities) in [28],
for the first time, we investigated adoption of an effective data fusion technique
named canonical correlation analysis (CCA) to fuse visual and textual features
extracted from movie trailers. A detailed discussion about CCA can be found
in Section 3.2. Although a small number of visual features were used to repre-
sent the trailer content (similar to [27]), the results of offline recommendation
using 14K trailers suggested the merits of the proposed fusion approach for the
recommendation task. In [30] we extended [28] and used both low-level visual
features (color- and texture-based) using the MPEG-7 standard together with
deep learning features in a hybrid CF and CBF approach. The aggregated
and fused features were ultimately used as input for a collective sparse linear
method (SLIM) [83] method, generating an enhancement for the CF method.
While the results for each of these two features improved the genre and tag
baselines, the best results were achieved with the CCA fusion approach. Al-
though [30] significantly extended the previous works [28,28] both in terms
of the content and the core recommendation model, it ignored the role of the
audio modality in the entire item modeling.

Finally, in [25], we used factorization machines (FM) [90] as the core recom-
mendation technique. FM is a general predictor working with any real valued
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feature vector and has the power of capturing all interactions between vari-
ables using factorized parameters. FM was used specifically with the goal of
encoding the interactions between mise-en-scène visual features and metadata
features for the recommendation task. Please note that in the present work, we
neither use FM nor SILM, specifically because one of the main contributions
of the work at hand is to propose and simulate a novel technique for new item
recommendation for which FM or SLIM are not applicable.

In a different research line, in [39], we designed an online movie recom-
mender system which incorporates mise-en-scène visual features for the evalu-
ation of recommendations by real users. We performed an offline performance
assessment by implementing a pure CB-MRS with three different versions of
the same algorithm, respectively based on (i) conventional movie attributes,
(ii) mise-en-scène visual features, and (iii) a hybrid method that interleaves
recommendations based on the previously noted features. As a second con-
tribution, we designed an empirical study and collected data regarding the
quality perceived by the users. Results from both studies showed that the
introduction of mise-en-scène, together with traditional movie attributes, im-
proves the quality of both offline and online recommendations. However, the
main limitation of [39] is that we used basic late fusion by interleaving the
recommendations to combine recommendations generated by different CBF
systems.

In summary, although we achieved relevant progress, some limitations of
our previous work remain unsolved: (i) solely visual and/or text modalities
were considered, forgetting the rich audio information (e.g., conversations or
music); (ii) better fusion techniques are required to fully exploit the com-
plementary information from (several) modalities; (iii) visual content can be
represented with richer descriptors; and (iv) the recommendation model used
was either a CBF model based on KNN or a CBF+CF model based on SLIM,
both of which are not capable to deal with new item CS scenarios.

In this paper, we enhance these previous achievements and go beyond the
state of the art in the following directions:

1. We propose a multimodal movie recommendation system which exploits
established multimedia aesthetic-visual features; block-level audio features;
state-of-the-art deep visual features; and i-vectors audio features. Apart
from the use of automated content descriptors, the system uses as input
movie trailers instead of complete movies, which makes it more versatile, as
trailers are more readily available than full movies. We show that the pro-
posed CB-MRS outperforms the traditional use of metadata. To the best
of our knowledge, this has not previously been achieved, existing systems
being limited to the use of either visual and/or textual modalities [27,24,
25] or basic low-level descriptors [110,81];

2. We propose a practical solution to the CS new-item problem where user
behavior data are unavailable, and therefore neither CF nor CBF us-
ing user-generated content are applicable. Our solution consists of a two-
step approach named collaborative-filtering-enriched content-based filtering
(CFeCBF) to leverage the collaborative knowledge about warm items and
exploit it for CBF on cold items.
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3. To achieve multimodal MRS, we adopt an early fusion approach using canon-
ical correlation analysis (CCA), which was successfully tested in our pre-
vious works [28,30] for combining heterogeneous features extraced from
different modalities (audio, visual and textual). CCA is often used when
two types of data (feature vectors in training) are assumed to correlate. We
hypothesize that this is relevant in the movie domain and that combining
audio, visual, and textual data enriches the recommendations.

4. We evaluate the quality of the proposed movie genome descriptors by two
comprehensive wide and articulated empirical studies: (i) a system-centric
experiment to measure the offline quality of recommendations in terms
of accuracy-related metrics, i.e., mean average precision (MAP) and nor-
malized discounted cumulative gain (NDCG); and beyond-accuracy met-
rics [53], i.e., list diversity, distributional diversity, and coverage; (ii) a user-
centric online experiment involving 101 users, computing different subjec-
tive metrics, including relevance, satisfaction, and diversity.

5. We publicly release the resources of this work to allow researchers to test
their own recommendation models. The dataset was already released partly
in [23] while the code is now available on Github.7

3 Proposed recommendation framework

The main processing stages involved in our proposed CFeCBF-MRS are pre-
sented in Figure 1. As previously mentioned, the only input information,
apart from the collaborative one, is the movie trailers. First, we perform
pre-processing that consists of decomposing the visual and audio channels
into smaller and semantically more meaningful units. We use frame-level and
block-level segmentation for the audio channel. For video, we use the frames
captured at 1 fps. The next step consists of computing meaningful content
descriptors (cf. Section 3.1), namely: (i) multimedia — audio and visual fea-
tures; and (ii) metadata — movie genres. Features are aggregated temporally
using different video-level aggregation techniques, such as statistical summa-
rization, Gaussian mixture models (GMM), and vectors of locally aggregated
descriptors (VLAD) [52]. Features are fused by using the early fusion method
CCA (cf. Section 3.2). At this stage, each video is represented by a feature
vector of fixed length, which is referred to as the item profile. A collabora-
tive recommender is trained on all available user-item interactions in order to
model the correlations encoded in users’ interaction patterns, using the sim-
ilarity of ratings as an indicator of similar preference. As the last step, the
CFeCBF weighting scheme is trained on the given item profile and collabora-
tive model to discover the hybrid feature weights. The learned feature weights
are then applied to a CBF recommender able to provide recommendations for
cold items. Each of these steps is detailed in the following sections.

7 https://github.com/MaurizioFD/CFeCBF

https://github.com/MaurizioFD/CFeCBF


Movie Genome: Alleviating New Item Cold Start in Movie Recommendation 13

video

Segmentation

Fig. 1: The proposed collaborative-filtering-enriched content-based filtering
(CFeCBF) movie recommender system framework.

3.1 Rich item descriptions to model the movie genome

Similar to biological DNA, which represents a living being, multimedia content
information can be seen as the genome of video recommendation, i.e., the
footprint of both content and style. In this section, we present the rich content
descriptors integrated into the proposed movie recommendation system to
boost its performance. These features were selected based on their effectiveness
in representing multimedia content in various domains and comprise both
audio and visual features [22,23].

3.1.1 Audio features

The exploited audio features are inspired by the fields of speech processing
and music information retrieval (MIR) and by their successful application in
MIR-related tasks, including music retrieval, music classification, and music
recommendation [58]. We investigate two kinds of audio features: (i) block-level
features [96] which consider chunks of the audio signal known as blocks and are
therefore capable of exploiting temporal aspects of the signal; and (ii) i-vector
features [36] which are extracted at the level of audio segments using audio
frames. Both approaches eventually model the feature at the level of the entire
audio piece; by aggregating the individual feature vectors across time.

Block-level features: We extract block-level features (BLF) from larger au-
dio segments (several seconds long) as proposed in [97]. They can capture
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Fig. 2: Overview of the feature extraction process in the block-level features
(BLF), according to [97].

Fig. 3: Obtaining a global feature representation from individual blocks in the
block-level framework, according to [97].

temporal aspects of an audio recording and have been shown to perform very
well in audio and music retrieval and similarity tasks [96] and can be considered
state of the art in this domain.

The BLF framework [97] defines six features. These capture spectral aspects
(spectral pattern, delta spectral pattern, variance delta spectral pattern), har-
monic aspects (correlation pattern), rhythmic aspects (logarithmic fluctuation
pattern), and tonal aspects (spectral contrast pattern). The feature extraction
process in the block-level framework is illustrated in Figure 2. Based on the
spectrogram, blocks of fixed length are extracted and processed one at a time.
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The block width defines how many temporally ordered feature vectors comprise
a block. The hop size is used to account for possible information loss due to
windowing. After having computed the feature vectors for each block, a global
representation is created by aggregating the feature values along each dimen-
sion of the individual feature vectors via a summarization function, which is
usually expressed as a percentile, as illustrated in Figure 3. A more technical
and algorithmic discussion can be found in [97]. The extraction process results
in a 9, 948-dimensional feature vector per video.
I-vector features: I-vector is a fixed-length and low-dimensional representa-
tion containing rich acoustic information, which is usually extracted from short
segments (typically from 10 seconds to 5 minutes) of acoustic signals such as
speech, music, and acoustic scene. The i-vector features are computed using
frame-level features such as mel-frequency cepstral coefficients (MFCCs). In a
movie recommendation system, we define total variability as the deviation of
a video clip representation from the average representation of all video clips.
I-vectors are latent variables that capture total variability to represent how
much an audio excerpt is shifted from the average clip. The main idea is to
first learn a universal background model (UBM) to capture the average distri-
bution of all the clips in the acoustic feature space using a dataset containing
a sufficient amount of data consisting of different movie clips. The UBM is
usually a Gaussian Mixture Model (GMM) and serves as a reference to mea-
sure the amount of shift for each segment where the i-vector is the estimated
shift.

Extract 
MFCCs

Train 
UBM

Calculate 
statistics

Train
T

Compute
i-vectors

Train/Apply 
LDA

Train the 
recommender

Extract 
MFCCs

UBM
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i-vectors

Apply
LDA

UBM - T

Test the 
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Fig. 4: Block diagram of i-vector FA pipeline for, both, supervised and unsu-
pervised approaches.

The block-diagram of the i-vector pipeline, from frame-level feature extrac-
tion to i-vector extraction and finally to recommendation, is shown in Figure 4.
The framework can be decomposed into several stages: (i) Frame-level feature
extraction: MFCCs have proven to be useful features for many audio and mu-
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sic processing tasks [74,40,36]. They provide a compact representation of the
spectral envelope are also a musically meaningful representation [36], and are
used to capture acoustic scenes [35]. Even though it is possible to use other fea-
tures [103], we avoid the challenges involved in feature engineering and instead
focus on the timbral modeling technique. We used a 20-dimensional MFCCs
feature; (ii) Computation of Baum-Welch statistics: In this step, we collect
sufficient statistics by adapting UBM to a specific segment. This is a process
in which a sequence of MFCC feature is represented by the Baum-Welch (BW)
statistics (0-th and 1-st order Baum-Welch statistics) [64,56] using a GMM as
prior; (iii) I-vector extraction: I-vector extraction refers to the extraction of
total factors from BW statistics. This step reduces the dimensionality of the
movie clip representations and improves the representation for a recommen-
dation task; (iv) Recommendation: Recommendation is effected by integrating
the extracted i-vector features in a CBRS.

During the training phase, the UBM is trained on the items in the training
dataset and is used as an external knowledge source for the test dataset. In the
testing step, test i-vectors are extracted using the models from the training
step and the MFCCs of the test set. In the supervised approach, these i-
vectors are projected by LDA in the training step. For the i-vector extraction,
we used 20-dimensional MFCCs. For the items in the training set (in each
fold), we trained a UBM with either 256 or 512 Gaussian components and a
different dimensionality of latent factors (40, 100, 200, 400). We performed
a hyper-parameter search and reported the best results obtained over 5-fold
cross-validation for each evaluation metric.

3.1.2 Visual features

The visual features we selected for our experiments were previously used in
other domains, including image aesthetics, media interestingness, object recog-
nition, and affect classification. We selected two types of visual features: (i)
aesthetic visual features, a set of features mostly associated with media aes-
thetics, and (ii) deep learning features extracted from the fc7 layer of the
AlexNet deep neural network, initially developed for visual object recogni-
tion, but extended and used in numerous other domains. Several aggregation
methods were also performed with these features, with the goal of obtaining
video-level descriptors from the frame-level set of extracted features.

Aesthetic-visual features: the three groups of features and their early fu-
sion combinations were aggregated in a standard statistical aggregation scheme
based on mean, median, variance, and median absolute deviation. In a work
discussing the measurement of coral reef aesthetics, the authors in [45] propose
a set of features inspired by the aesthetic analysis of artwork [66] and photo-
graphic aesthetics [19,54]. This collection of features is derived from related
domains, such as photographic style, composition, and the human perception
of images, and was grouped into three general features types: color-related,
texture-related and object-related.
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The color-related features have 8 main components. The first elements
consist of the average channel values extracted from the HSL and HSV color
spaces. A colorfulness measure was created by calculating the Earth Mover’s
Distance, Quadratic Distance and standard deviation between two distribu-
tions: the color frequency in each of the 64 divisions of the RGB spectrum
and an equal reference distribution. The hue descriptors contained statistical
calculations for pixel hues: number of hues present, number of significant hues
for the image etc. The hue models are based on the distance between the cur-
rent picture and a set of nine hue models considered appealing for humans
inspired by the models presented in [77]. The brightness descriptor calculates
statistics regarding image brightness, including average brightness values and
brightness/contrast across the image. Finally, average HSV and HSL values
were calculated while taking into account the main focus region and rule of
thirds compositional guideline [84].

The texture-related features have 6 components. The edge component cal-
culates statistics based on edge distribution and energy, while the texture com-
ponent calculates statistics based on texture range and deviation. Also entropy
measures were calculated on each channel of the RGB color space, generating
a measure of randomness. A three-level Daubechies wavelet transform [20] was
calculated for each channel of the HSV space along with the values for the av-
erage wavelet. A final texture component was based on the low depth-of-field
photographic composition rule, according to the method described by [19].

The object-related features have 11 components. These components are
mostly based on the largest segments in an image obtained through the method
proposed in [19], which is based on the k-means clustering algorithm. The area,
centroids, values for the hue, saturation, and value channels, average brightness
values, horizontal and vertical coordinates, mass variance and skewness for the
largest, and therefore most salient, segments each constitutes a component of
this feature type. Color spread and complementarity also represented a com-
ponent, while the last component calculates hue, saturation, and brightness
contrast between the resulting segments.

As previously mentioned, this set of features is highly correlated to the
human observer, some components being heavily based on psychological or
aesthetic aspects of visual communication. For example, the hue model com-
ponent calculates the distance between the hue model of a certain image and
models considered appealing to humans, inspired by the work of [77]. Also,
some general rules of photographic style were used, rules previously shown to
have a high impact on human aesthetic perception, therefore generating more
pleasant images and videos [62]. For example, the authors in [70] modify im-
ages in order to achieve a better aesthetic score, one of the rules applied for
this optimization being the rule of thirds.

We used these features in our experiments, both separated into the three
main feature types (color, texture and object) and in an early fusion con-
catenated descriptor for each image in the video. Regarding the aggregation
method, we used four standard statistical aggregation schemes based on mean,
median, variance and median absolute deviation.
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Deep-learning features: Deep neural networks have become an important
part of the computer vision community, gathering interest and gaining im-
portance as their results started performing better than more traditional ap-
proaches in different domains. The ImageNet Large Scale Visual Recognition
Competition (ILSVRC) gives the opportunity to test different object recog-
nition algorithms on the same dataset, consisting of a subset of 1.2 million
images and 1, 000 different classes taken from the ImageNet8 database. The
AlexNet [63] deep neural network was the winner of the competition in 2012,
achieving a top-5 error rate of 15.3% — a significant improvement over the sec-
ond – best entry – that year. The authors also ran experiments on the ILSVRC
2010 dataset, concluding that the top-1 and top-5 error rates of 37.5% and 17%
were again improvements on previous state-of-the-art approaches. One of the
novelties introduced by this network was the ReLU (Rectified Linear Units)
nonlinearity output function, which was able to achieve faster training times
than networks working with more standard functions like f(x) = tanh(x) or
f(x) = (1 + e−x)−1, instead using f(x) = max(0, x).

AlexNet consists of 5 convolutional layers and 3 fully connected layers,
ending with a final, 1, 000-dimensional softmax layer. The input of the network
consists of a 224 × 224 × 3 image, therefore requiring the original image to
be resized if the resolution is different. The five convolutional layers have the
following structure: the first layer has 96 kernels of size 11×11×3; the second,
256 kernels of size 5 × 5 × 48; the third, 384 kernels of size 3 × 3 × 256; the
fourth, 384 kernels of size 3×3×192; and the final, fifth convolutional layer, 256
kernels of size 3× 3× 192. The fully connected layers all have 4, 096 neurons,
and the output of the final one is fed into a softmax layer that creates a
distribution for the 1, 000 labeled classes. This generates a network with 60
million parameters and 650, 000 neurons; thus, in order to reduce overfitting
on the original dataset, some data augmentation solutions were employed,
including image translations, horizontal reflections, and the alteration of the
intensity of the RGB channels and a dropout technique [49].

Given the good performance of the fc7 layer in tasks related to human
preference, we chose to extract the outputs of this layer for each frame of
our videos, thus obtaining a 4, 096-dimensional descriptor for each image. We
then obtain a video-level descriptor through two types of aggregation meth-
ods: standard statistical aggregation, where we calculate the mean, median,
variance, and median absolute deviation, and VLAD [52] aggregation followed
by PCA for dimensional reduction, with three different sizes for the visual
word codebook: k ∈ {32, 64, 128}.

3.1.3 Metadata features

We also use two types of editorial metadata features to serve as baselines:
movie genre and cast/crew features.
Genre features: For every movie, genre features are used to serve as meta-
data baselines. Genre Features (18 categories): Action, Adventure, Animation,

8 http://www.image-net.org/

http://www.image-net.org/
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Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film Noir, Hor-
ror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, and Western. The final
genre feature vector is a binary, 18-dimensional vector.9

Cast/crew features: For every movie, the corresponding cast and crew have
been downloaded from TMDB10 using the available API and movie ID map-
ping provided by Movielens20M. The feature vector contains 162K Boolean
features. Each movie is associated, on average, with 25 features.

3.2 Multimodal fusion

Two main paradigms of fusion exist in the literature of multimedia process-
ing [102]: (i) late fusion which generates separate candidate results created by
different systems and fuses them into a final set of results; the main limita-
tion of late fusion methods is that they do not consider the correlation among
features and are computationally more expensive during training; (ii) early
fusion which tries to map multiple feature spaces to a unified space, in which
conventional similarity-based evaluation can be conducted.

Motivated by the above, in current work we exploit a multimodal early
fusion method based on canonical correlation analysis (CCA) that was suc-
cessfully tested in our previous works [28,30]. CCA is a technique for joint
fusion and dimensionality reduction across two or more (heterogeneous) fea-
ture spaces, which is often used when two set of data are believed to have some
underlying correlation. We hypothesize that this is relevant in movie domain
and combining audio, visual and textual data enriches the recommendations
and training. Additionally, since the focus of the recommendation model in
our work is on a CF-enriched CBF model (see Section 3.3), we have realized
that currently the proposed method functions better with a lower size of the
feature vectors. As CCA reduces the dimensionality of the final descriptor, it is
is leveraged greatly in the proposed recommendation framework. Finally, CCA
can be pre-computed and used in an off-the-shelf manner making it a conve-
nient descriptor in offline experiments (as opposed to late fusion methods [22]).

We review the concept of CCA here for our methodology. Let X ∈ Rp×n

and Y ∈ Rq×n be two sets of features in which p and q are the dimensions
of features extracted from the n items. Let Sxx = cov(x) ∈ Rp×p and Syy =
cov(y) ∈ Rq×q be the within-set and Sxy = cov(x, y) ∈ Rp×q be the between-

set covariance matrix. Let us further define S ∈ R(p+q)×(p+q) as the overall
covariance matrix — a complete matrix which contains information about

9 While presenting the results, we will use the genre metadata as the baseline for evalu-
ation, as it is prevalent in the domain. Furthermore, we refrain from using user-generated
metadata such as tag features in this work, since in a new item CS situation these features
cannot exist.
10 https://www.themoviedb.org/

https://www.themoviedb.org/
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associations between pairs of features — represented as follows:

S =

(
Sxx Sxy

Syx Syy

)
=

(
cov(x) cov(x, y)

cov(y, x) cov(y)

)
(2)

The aim of CCA is to identify a pair of linear transformations, represented
by X∗ = WT

x X and Y ∗ = WT
y Y , that maximizes the pairwise correlation

across two feature sets given by

arg max
Wx,Wy

corr(X∗, Y ∗) =
cov(X∗, Y ∗)

var(X∗) · var(Y ∗)
(3)

where cov(X∗, Y ∗) = WT
x SxyWy and var(X∗) = WT

x SxxWx and var(Y ∗) =
WT

y SyyWy.
In order to solve the above optimization problem, we use the maximization

procedure described in [46]. The CCA model parameters Wx and Wx are
learned on trained items (warm items) and leveraged both in the training and
test phases. We investigate two ways to perform fusion: (i) via concatenation
(abbreviated by ‘ccat’) and (ii) via summation (abbreviated by ‘sum’) of the
transformed features.

3.3 The cold-start recommendation model

The core recommendation model in our system is a standard pure CBF system
using Eq. 4 to compute similarities between different pair of videos:

sim(i, j) =
fiD fj

‖fi‖2F ‖fj‖
2
F

(4)

where fi ∈ RnF is the feature vector for video i, ‖‖2F is the Frobenius norm
and nF is the number of features. We are interested in finding the diagonal
weight matrix D ∈ RnF×nF , which represents the importance of each feature.

An underlying assumption is that a CF model will achieve much higher
recommendation quality than CBF and will be better able to capture the
user’s point-of-view. We use a CF model to learn D, cast into the following
optimization problem:

argmin
D

∥∥∥S(CF) − S(D)
∥∥∥2
F

+ α ‖D‖2F + β ‖D‖ (5)

where S(CF) is the item-item collaborative similarity matrix from which we
want to learn, S(D) is the item-item hybrid similarity metric presented via
Eq. (4), D is the feature weight matrix, α and β are the weights of the regu-
larization terms.

We call this model collaborative-filtering-enriched content-based filtering
(CFeCBF). The optimal D is learned via machine learning, applying stochastic
gradient descent with Adam [57], which is well suited for sparse and noisy
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Fig. 5: User interactions’ item-wise split; A contains warm items while B con-
tains s and refers to a subset of the users.

gradients. The code is available on Github11. CFeCBF is a wrapper method
for feature weighting; therefore, it does not learn weights while building the
model but rather relies on a previously trained model and then learns feature
weights as a subsequent step. Since the model we rely on is collaborative, we
can only learn weights associated with features that occur in warm items. This
affects how well the algorithm can perform in scenarios where the available
features are too sparse; in this case, the number of features appearing in s but
not in warm items will tend to increase, reducing the number of parameters
in the model.

It is important to point out that while it will be possible to learn a zero
collaborative similarity for items having a common feature, it will not be pos-
sible to learn anything for items with no common features. Therefore, content-
based similarity poses a hard constraint on the extent to which collaborative
information can be learned. As content-based similarity is a function of the
item features, the sparser this matrix is the less information will be learnable
from a collaborative model. This could be a challenge when using Boolean
features that tend to be sparse, but much less of one when using real-valued
attributes like the multimedia descriptors, which result in dense feature vec-
tors. A consequence of this is that the success of applying CFeCBF on a given
dataset depends not only on how accurate the collaborative model is, but also
on whether its similarity structure, resulting from the items having common
features, is sufficiently compatible with that of the content-based model12.
CFeCBF requires a two-step training procedure. In the first step, we aim to
find the optimal hyper-parameters for a collaborative model by training it on
warm items and selecting the optimal hyper-parameters via cross-validation.
Since we want a single hyper-parameters set, not one for each fold, we chose
those with the best average recommendation quality across all the training
folds.

Once the collaborative model is available, the second step is to learn weights
by solving the minimization problem described in Eq. 5. As the purpose of this
method is to learn D, or feature weights, the optimal hyper-parameters for the
machine learning phase are chosen via a cold item split to improve the CBF
on new items. Figure 5 shows how a cold item split is performed: split A

11 https://github.com/MaurizioFD/CFeCBF
12 As our experiments have showed, the best collaborative similarity will not necessarily

yield the best weights.

https://github.com/MaurizioFD/CFeCBF
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represents the warm items, that is, items for which we have interactions and
that we can use to train the collaborative model, and split B represents cold
items that we use only for testing the weights. All reported results for pure
CBF and CFeCBF are reported on split B.

4 Experimental study A: Offline experiment

In this experiment, we investigate offline recommendation in cold- and warm-
start scenarios. The specific experimental setup is presented in the following
section.

Table 2: Characteristics of the evaluation dataset used in the offline study: |U|
is the number of users, |I| the number of items, |R| the number of ratings.

ML-20M |U| |I| |R| |R|
|U|

|R|
|I|

|R|
|I|·|U| (density)

Train (A) 138 K 12,6 K 10 M 72.46 793.65 0.0057
Test (B) 3 K 4,8 K 212 K 70.67 44.16 0.0144

4.1 Data

We evaluated the performance of the proposed MRS on the MovieLens-20M
(ML-20M) dataset [47], which contains user-item interactions between users
and an up-and-running movie recommender system. We employ 5-fold cross-
validation (CV) in our experiments by partitioning the items in our dataset
into 5 non-overlapping subsets (item-wise splitting of the user-rating matrix).
Different folds will have different cold items. Similar to [3], we built the test
split by randomly selecting 3, 000 users, each having a minimum of 50 ratings
in their rating profile, in order to speed up the experiments on the many feature
sets. The items those users interacted with will be considered cold items; see
split B in Fig. 5. The remaining items and interactions will be part of the
training set. The reported results are referred to split B. Meanwhile, split A
is used to perform parameter tuning. The characteristics of the data split are
shown in Table 2. The significantly higher number of ratings per item in the
training set (A) is due to the fact that it contains more users, and hence more
interactions, than the test set (B).

4.2 Objective evaluation metrics

For assessing performance in the offline experiments, we compute the two
categories of metrics, accuracy metrics (cf. Section 4.2.1) and beyond-accuracy
metrics (cf. Section 4.2.2). The name and definition of the specific metrics
computed is provided in the corresponding sections.
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4.2.1 Accuracy metrics

Mean average precision (MAP) is a metric that computes the overall precision
of a recommender system, based on precision at different recall levels [67]. It
is computed as the arithmetic mean of the average precision (AP) over the
entire set of users in the test set, where AP is defined as follows:

AP =
1

min(M,N)

N∑
k=1

P@k · rel(k) (6)

where rel(k) is an indicator signaling if the kth recommended item is relevant,
i.e., rel(k) = 1, or not, i.e., rel(k) = 0; M is the number of relevant items;
and N is the number of recommended items in the top N recommendation
list. Note that AP implicitly incorporates recall, because it considers relevant
items not in the recommendation list. Finally, given the AP equation, MAP
will be defined as follows:

MAP =
1

|U |
∑
u∈|U |

APu (7)

Normalized discounted cumulative gain (NDCG) is a measure for the rank-
ing quality of the recommendations. This metric was originally proposed to
evaluate the effectiveness of information retrieval systems [51]. It is nowadays
also frequently used for evaluating music recommender systems [72,86,108].
Assuming that the recommendations for user u are sorted according to the
predicted rating values in descending order, DCGu is defined as follows:

DCGu =

N∑
i=1

ru,i
log2(i+ 1)

(8)

where ru,i is the true rating (as found in test set T ) for the item ranked at
position i for user u, and N is the length of the recommendation list. Since the
rating distribution depends on users’ behavior, the DCG values for different
users are not directly comparable. Therefore, the cumulative gain for each user
should be normalized. This is done by computing the ideal DCG for user u,
denoted as IDCGu, which is the DCGu value that provides the best possible
ranking, obtained by ordering the items by true ratings in descending order.
Normalized discounted cumulative gain for user u is then computed as follows:

NDCGu =
DCGu

IDCGu
(9)

Finally, the overall normalized discounted cumulative gain NDCG is computed
by averaging NDCGu over the entire set of users.
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4.2.2 Beyond-accuracy metrics

The purpose of a recommender system is not only to recommend relevant items
to the user based on their past behavior but also to facilitate exploration of the
catalogue, helping to discover new items that the user might find interesting.
Beyond-accuracy metrics try to assess if the recommender is able to diversify
its recommendations for different users and leverage the whole catalogue or if
it is focused on just a few highly popular items. In this study, we focus on the
following measures:

Coverage of a recommender system is defined as the proportion of items
which have been recommended to at least one user [48]:

coverage =
|Î|
|I|

(10)

where |I| is the cardinality of the test item set and |Î| is the number of items
in I which have been recommended at least once. Recommender systems with
lower coverage are limited in the number of items they recommend.

Intra-list Diversity is another important beyond-accuracy measure. It gauges
the extent to which recommended items are different from each other, where
difference can relate to various aspects, e.g., genre, style or composition. Di-
versity can be defined in several ways. One of the most common is to compute
the pairwise distance between all items in the recommendation set, either
averaged [118] or summed [101]. In the former case, the diversity of a recom-
mendation list L is calculated as follows:

IntraL(L) =

∑
i∈L

∑
j∈L\i

disti,j

|L| · (|L| − 1)
(11)

where disti,j is some distance function defined between items i and j. Common
choices are inverse cosine similarity [91], inverse Pearson correlation [106], or
Hamming distance [55]. In our experiments we report a diversity computed
using the genre of the movies and cosine similarity.

Inter-list diversity or inter-user diversity measures the uniqueness of dif-
ferent users recommendation lists [117]. Given two users i and j, and their
recommendation list L, the inter-list distance can be calculated by:

InterL(Li, Lj) = 1− q(Li, Lj)

|L|
(12)

where q(Li, Lj) is the number of common items in recommendation lists of
length |L|. InterL(Li, Lj) = 0 indicates identical lists and InterL(Li, Lj) =
1, completely different ones. The mean distance is obtained by averaging
InterL(Li, Lj) over all pairs of users such that i 6= j.

A model which tends to frequently recommend the same set of items will
result in similar recommendation lists and low diversity, whereas a recom-
mender better able to tailor its recommendations to each user will exhibit
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higher diversity [117]. In this respect, inter-list diversity and intra-list diver-
sity are complementary. Consider a Top Popular recommender (i.e., one that
recommends the most popular items). Its recommendations might have high
intra-list diversity if they involve movies with different characteristics; there-
fore, a user will perceive them as diverse. However, all users will receive the
same recommendations and both item coverage and inter-list diversity will be
very low.

While an increase in diversity can indicate that the recommender is better
able to offer personalized recommendations, it should be taken into account
that the lowest diversity, and item coverage, will be obtained by always rec-
ommending the same items, whereas the highest will be obtained by a random
recommender. This is another example of the accuracy-diversity trade-off.

In order to better understand how much the proposed techniques truly
contribute towards more diverse and idiosyncratic recommendations across all
users, in addition to the above beyond-accuracy metric, we also computed
the metrics entropy, Gini coefficient, and Herfindahl (HHI) index [2]. These
metrics provide different means for measuring distributional dispersion of rec-
ommended items across all users, and are therefore referred to as aggregate
diversity. If recommendations are concentrated on a few popular items, the
recommender will have low coverage and low diversity in terms of entropy
and HHI but high Gini Index. If recommendations are more equally spread
out across all candidate items, the recommender will exhibit high diversity
and coverage but low Gini Index [2]. These metrics provide an overview of
the recommender system from a system-wide point of view and are useful for
assessing its behavior when deployed on a real, business-oriented system.

The distributional dispersion metrics are defined as follows:

Entropy = −
∑
i∈I

rec(i)

rect
· ln rec(i)

rect
(13)

Gini− index =

|I|∑
i=1

2i− |I| − 1

|I|
· rec(i)
rect

(14)

Herfindahl − index = 1− 1

rec2t

∑
i∈I

rec(i)2 (15)

where rec(i) refers to the number of times item i has been recommended over
all users, rect the total number of recommendations (i.e., cutoff value times
the number of test users), I the cold items set, and |I| its cardinality. Note
that while the Gini index and Herfindahl index have a value range between 0
and 1, Shannon entropy is not bounded by 1.

4.3 Collaborative filtering model

Following the results of [42] we chose as collaborative model RP3beta [87]
which demonstrated a very competitive recommendation quality at a very
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small computational cost, since it does not require ML. RP3beta is a graph-
based algorithm which models a random walk between two sets of nodes, users
and items. Each user is connected to the items he/she interacted with and each
item is similarly connected to the users. The model consists of an item-item
similarity matrix which represents the transition probability between the two
items, computed directly via the graph adjacency matrix, easily obtainable
from the URM. The similarity values are are elevated at a coefficient alpha
and divided by each item’s popularity elevated to a coefficient beta, the latter
acting as a reranking phase which takes the popularity bias into account.

4.4 Hyper-parameter tuning

The proposed approach requires two types of parameter tuning. Firstly, it is
necessary to train and tune the CF model. Since we want a single optimal
hyper-parameter set we train the CF recommender on all the train folds sepa-
rately and then select the hyper-parameters corresponding to the best average
recommendation quality on all folds, measured with MAP. This constitutes
a robust validation and testing methodology, and reduces the risk to overfit.
Each fold will be associated with its own collaborative model since different
folds will correspond to different cold items split. Secondly, the tuning of the
hyper-parameters of the feature weighting machine learning is performed in a
similar way, again optimizing MAP. We searched the optimal hyper-parameters
via a Bayesian search [6] using the implementation of Scickit-optimize13. As
for different aggregation methods designed for the audio and visual features,
we chose the best performing ones with regards to the metric under study.

4.5 Overall computational time and complexity

In this section, we provide general information regarding runtimes and overall
computational complexity of the subsystems in the proposed framework.

Regarding the extraction of the visual features, this process performs above
the real-time frame rate of the movies (25 or 30 frames per second). We have
performed feature extraction on a computer with Intel Xeon E5-1680 processor
with 8 cores, 16 threads and a base frequency of 3.00 GHz, 192 GB RAM and
an NVIDIA 1080TI GPU card with 3584 CUDA cores. While the extraction
of AlexNet features was handled by the GPU, with an average speed of 62.8
processed frames per second, the extraction of the aesthetic visual features was
done on the CPU, in parallel, using 7 of the 8 available cores and recording
an average speed of 38.3 processed frames per second.

The feature weighting phase has a low computational complexity as it
requires, for each epoch, to compute the gradient for each collaborative sim-
ilarity value and compute the prediction error by using the item features. It
is therefore linear in terms of both the number of descriptors and in terms
of the number of similarities which in turn grows quadratically on the items.

13 https://scikit-optimize.github.io/

https://scikit-optimize.github.io/


Movie Genome: Alleviating New Item Cold Start in Movie Recommendation 27

In terms of runtime, on an Intel Xeon E3-1246 3.50GHz with 32GB RAM,
learning the weights on the descriptors of length 200 takes 15 minutes on a
single core, including the time required to perform the validations needed by
early stopping.

4.6 Performance analysis: accuracy metrics

The experiments performed in Study A can be divided into four different cat-
egories, as presented in Table 3: baseline experiments using the genre and
cast/crew metadata features, both editorially created (cf. Section 3.1.3);14

unimodal experiments using traditional and state-of-the-art (SoA) audio and
visual features (cf. Section 3.1); content-based multimodal experiments, where
the proposed canonical correlation analysis (CCA) is used as an early fusion
method (cf. Section 3.2); and finally, collaborative-filtering enhanced multi-
modal experiments, where the systems from the previous multimodal experi-
ments are enhanced through the use of collaborative filtering (cf. Section 3.3).
In the latter two, multimodal, categories, we report and analyze the perfor-
mance of all combinations from the proposed unimodal features and the genre
baseline15.

As a general observation, we see that the unimodal visual and audio fea-
tures constantly outperform the baseline metadata systems. The best perfor-
mance is obtained by Deep visual features, improving the genre baseline by
53.0% in terms of NDCG and by 42.8% in terms of MAP. Even the lowest
performing unimodal feature, i.e., i-vector, still achieves a 14.4% increase for
NDCG and a 7.1% increase for MAP over the baseline. We further observe
that the Deep feature outperforms the traditional AVF feature in the visual
category, while in the audio category, the reverse pattern occurs, i.e., the tra-
ditional BLF feature has a better performance than the i-vector audio feature
for both metrics.

As presented in Section 3.2, our multimodal approaches use CCA as a fu-
sion method. We compared the CCA approach with a simple concatenation
method, as well as with a weighted late fusion Borda count method, as de-
scribed in [22]. We chose CCA as our early fusion method because all results
were better for the CCA approach. For example, in the case of the i-vec +
genre multimodal combination, CCA achieved a 9.5% MAP increase and a
20.2% NDCG increase over the simple concatenation method in the pure CBF
approach, while in the CFeCBF approach, the CCA fusion method achieved
a 151.6% increase in terms of MAP and a 181.8% increase in terms of NDCG.
These results confirm not only that CCA fusion produces good results on its

14 Note that we could not use tags as a feature in Study A, since the tags available in this
dataset are user-generated. For cold items, no interactions with users have occurred yet, so
no tags could be provided. While it could be possible the users added tags without providing
a rating, this does not solve the underlying problem as it presumes a kind of interaction.
Therefore the available tags for each items will be related to its popularity, some items will
acquire tags easily while others may have none for quite some time.
15 Note that we use the genre features as the main baseline due to their widespread usage

and the fact that genre and cast had similar performance in almost all reported metrics.
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own but also that it increases the power of collaborative filtering approaches
by heavily reducing the size of the feature vector. Furthermore, the use of
an early fusion method such as CCA allows us to easily create systems that
outperform the late fusion method mentioned in [22], in both accuracy metrics.

For the multimodal CBF approach, we observe that the CCA fusion of
the best performing unimodal audio and visual features (i.e., Deep and BLF)
leads to the best multimodal results. More precisely, Deep + BLF achieves a
22.8% improvement over the baseline (0.0102 vs. 0.0083) in terms of NDCG
and a 26.1% increase in terms of MAP (0.0053 vs. 0.0042). Similarly, the
combination i-vec + genre performed strongly, improving on the baseline by
21.6% for NDCG (0.0101 vs. 0.0083) and 9.5% for MAP (0.0046 vs. 0.0042).
This result was surprising, since both individual features, genre and i-vec,
had a weaker performance in the unimodal experiment. In fact, in all genre
combinations, such as AVF + genre, BLF + genre, and i-vec + genre, we
can see an improvement in performance. This suggests that the genre feature
has an information-complementary nature with other modalities, which can be
leveraged using the CCA fusion. However, the combination of Deep + genre
is an exception, as one can observe a decrease in performance. This may be
due to the correlation between the two.

The multimodal CFeCBF approach aims to enable the recommendation of
cold items by leveraging collaborative knowledge of warm items. The proposed
method was applied on CCA multimodal approaches, as presented in the CBF
multimedia approach. Looking at the performance globally, one can observe
that the CFeCBF multimodal approach improves the pure CBF multimodal
systems in all 10 combinations along NDCG and in 8 combinations along
MAP; the few non-improved feature combinations, i.e., AVF + BLF and Deep
+ BLF, already performed well in pure CBF experiments. For NDCG, the
average growth factor is 67%, with the minimum equal to 7% for Deep + BLF
and the maximum equal to 123% for AVF + Genre. For MAP, the average
growth factor is 68%, with the minimum equal to -7% for AVF + BLF and the
maximum equal to 148% for AVF + Genre. When compared with the genre
baseline, the proposed CFeCBF method improves the features, on average, by
79.75% for MAP and 72.6% for NDCG.

One final step was taken for the validation of these results, namely per-
forming the significance tests as pairwise comparisons between the best per-
forming systems and the best performing baseline genre. For both NDCG
and MAP metrics, we performed statistical significance tests using the multi-
ple comparison test provided by the statistical and machine learning toolbox
in MATLAB16 (function multcompare()), in which we adopted Fisher’s least
significant difference to compensate for multiple tests when performing all pair-
wise comparisons. Detailed information about the test can be found in [99].
The three best performing systems, i-vec + genre, AVF + genre, and AVF +
Deep, show significant improvements over the baseline with p < 0.05, where
the improvement along NDCG is 124.1%, 131.33%, and 130.12%, respectively,
and that along MAP equal to 85.7%, 130.12%, and 130.12%, respectively.
These results indicate the effectiveness of the proposed approach in dealing

16 https://www.mathworks.com/help/stats/multiple-comparisons.html

https://www.mathworks.com/help/stats/multiple-comparisons.html
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with very different kinds of features and its ability to embed collaborative
knowledge in a CBF recommender. In particular, the systems showing sig-
nificant improvements have lower dimensionality for the descriptors than the
others. This suggests that learning feature weights becomes harder as the num-
ber of dimensions increases. Applying dimensionality reduction techniques is
therefore beneficial when dealing with very long descriptors.

4.7 Performance analysis: beyond-accuracy metrics

In this section, we report the results for beyond-accuracy metrics. The results
are summarized in Table 4 (reports diversity metrics computed on the various
recommendation lists: inter-list diversity and intra-list diversity) and Table 5
(reports all the aggregate diversity metrics, which are instead computed on
the overall number of times each item was recommended to any user: Item
coverage, Shannon entropy, Gini index, and Herfindahl Index ).

From Table 4, we can observe that intra-list diversity (intraL) exhibits
similar values across all cases. As previously mentioned, this diversity is com-
puted with respect to the genre of movies, so a higher diversity would mean
recommendations of heterogeneous genres, while a lower diversity would mean
recommendations of the same genre. Following this definition, we expect that
a recommender based only on genre as a feature will exhibit the lowest intraL
diversity, which is in fact what we do observe. If we consider that as baseline
value, we can see that all other features — metadata, unimodal or multimodal
— achieve slightly higher diversity while not penalizing recommendation ac-
curacy; this increase is significant in all cases. In terms of inter-list diversity
(interL), results are more varied. We can see that multimodal recommenders,
both pure CBF and hybrid CFeCBF, yield higher diversity in most cases,
meaning that given any two users, the average number of items they have in
common in their recommendation lists is going to be lower. The increased In-
terL diversity for CFeCBF is statistically significant in almost all cases. This
suggests that multimodal recommenders will be less prone to concentrate their
recommendations on a small subset of items.

From Table 5, we can see the results for aggregate diversity metrics. Note
that while greater diversity will result in higher values for Item coverage, Shan-
non entropy, and Herfindahl Index, it will drive Gini index closer to zero. These
metrics allow us to look at the recommender from the point of view of the
whole system instead of that of the user, which is important when deploying
recommenders as a part of a business model. We first focus on Item coverage,
which tells us the portion of cold items the system was able to recommend. We
can immediately see that the baseline recommenders using metadata have poor
coverage: only half of the available items were recommended at least once. Most
models based on multimodal features, instead, exhibit significantly higher cov-
erage — up to more than 90%, meaning they are able to explore the catalogue
much better without sacrificing recommendation quality. The other metrics
measure the number of times each item has been recommended. Compared
to the coverage, they provide the additional information about the number of
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occurrences. Within a certain coverage value, the distribution of items can be
very different. For example, in the case of a Top Popular recommender in a
warm item scenario, the final coverage will be higher than the length of the
recommendation list because some users will already have already interacted
with those items and therefore other, less popular, items will be recommended
to them. Distribution diversity metrics allow us to determine the extent to
which the recommender is trying to diversify its recommendations. As an ex-
ample, consider the 4 cases having coverage between 94.5% and 96.5%, with
an interval of just 2% of all items. These cases exhibit a Gini index varying
between .65 to .78, meaning that there is a difference in the number of times
those items were recommended. In particular, the increase in coverage was
accompanied in this case by more unbalanced, and therefore less diverse, item
occurrence.

We can see how there is a significant difference between Multimodal and
Base recommenders in terms of Gini index, meaning that the multimodal rec-
ommenders, both pure and hybrid, have more balanced item distribution. The
combination of very high item coverage and improved distributional diversity
metrics suggest that the collaborative machine learning step does not add a
popularity bias to the feature weights, on the contrary CFeCBF is less subject
to it than the Base recommenders. Moreover, we see that Shannon Entropy
increases, meaning that the recommender is getting less “predictable” in the
recommendations it will provide. This confirms what was observed in terms
of interL diversity. The Herfindahl index is known to have a small value range
when applied to recommender systems, as we can see in our experiments where
its value ranges from .96 to .99. Compared to the other indices, it is less sensi-
tive to items being recommended only a few times, due to its quadratic nature,
but more sensitive to items being recommended a high number of times. Its
values confirm the increased diversity achievable by Multimodal recommenders
in almost all cases for pure CBF and in all cases for hybrid CFeCBF.

4.8 Cold to warm item transition

While the core of our experimental study is aimed at cold start items, in a
real case scenario we expect some interactions to become available over time
as the users interact with the cold items. For practical use it is interesting
to assess when it is appropriate to change the recommendation model from a
content based, either pure or CFeCBF, to a collaborative model. To this end
we design a brief study, aiming to assess at which interaction density an item
transition from cold to warm, allowing the use of CF methods.

It is already well known that, depending on the dataset, even a few inter-
actions may be sufficient to outperform CBF approaches [88].

4.8.1 Experimental protocol

To simulate a realistic cold to warm transition we add some interactions to
the cold items. Those interactions are taken from the original test set of that
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fold. Since this study requires to create a new data split, with a denser train
and a sparser test set, the results here reported are not comparable to the ones
reported in the previous study.

We report two different experimental settings, one preserves the popular-
ity distribution of the items, the other does not. The reader should notice
that, being sampled in different, ways, the test set of the two experiments are
different and the results are not directly comparable.

Random sampling In order to preserve the statistical distribution of the in-
teractions and the impact of the item’s popularity, the new train interactions
for the cold items are randomly sampled, with no constraints applied. This
will result in a mixture of popular items having a few interactions and un-
popular items having none. This experiment allows to assess what happens in
a realistic case in which some cold items will be popular and therefore col-
lect interactions much faster, while others will not. This is motivated by the
fact that CF algorithms, which CFeCBF is learning from, are sensitive to the
popularity distribution and altering such distribution will result in biased CF
models. The original test data is sampled so that 2% of its interactions become
new train data and 98% constitute the new test data. To show the behaviour
at different densities, the train data is further divided in a smaller set only
containing 0.5% of the original test interactions.

Fixed number of interactions While the previous experiment models a real
case scenario more accurately, it leaves open the question of how significant
is the effect of the popularity bias on the results. To this end also build a
different split which contains a fixed number of train interactions for the cold
items. This creates an artificial popularity distribution which will change the
behaviour of the CF model. The number of interactions we chose is 1 and 5.
This will result in a perfectly balanced train set. In this case the test data is
composed by the original test data minus 4 interactions for each item.

This new train data is therefore composed by the original train data plus
the interactions sampled from the test set and is used to train all algorithms:
CBF, CF and CFeCBF. The optimal parameters remain those selected in the
previous phase when no interactions were available. In a real case scenario it
would be impractical to run a new tuning of the model’s parameters after each
few interactions are added. It is instead more realistic for this tuning phase to
be executed again only once a sufficient amount of new data is available.

4.8.2 Result discussion

The results for the random split are reported in Table 6 for both accuracy
metrics and Item Coverage.17 As it is possible to see, in terms of accuracy
metrics the recommendation quality of pure CBF remains constant as the
transition progresses. CFeCBF, instead, changes its recommendation quality,
in some cases improving over the cold item case, in others not. This is due to
the evolving CF model it is learning from.

17 For brevity we did not report all beyond accuracy metrics.
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The most important thing to observe is that the pure collaborative al-
gorithm, RP3beta, is immediately able to outperform all CBF and CFeCBF
models in terms of accuracy metrics. It should be noted that Movielens, the
dataset from which the interactions are taken, tends to exhibit high recom-
mendation quality for collaborative algorithms which makes this cold to warm
transition very fast. Consider that Warm 0.5% corresponds to an average of
1 · 10−1 interactions per item and Warm 2.0% of 4 · 10−1 interactions per
item. Looking at the recommendation quality alone is however misleading. In
terms of diversity it is possible to see that CF has a remarkably low item
coverage. This means that the CF algorithm is still not able to explore the
catalogue, being confined to a marginal 6% of the available items. The result
can be explained by the significant popularity bias of the dataset, hence a few
items account for a sizable quota of the interactions, while many others have
much fewer. This behaviour means that the CF model is recommending only
a few popular items, being unable to recommend the vast majority of them.
CF fails completely to allow the user a broad exploration of the catalogue and
offers very little personalization. Moreover, if the items are not seen by the
users, it will be very difficult to collect the interactions needed for them to
become warm items, the risk being to keep them in a cold state for very long.
CFeCBF, on the other hand, has a very high Item Coverage, which allows
a broader exploration of the catalogue, yielding to a higher probability cold
items will be rated and a more effective CF model could be applied at a later
stage.

If we look at the results for the fixed number of interactions experiment in
Table 7, we can observe a different behaviour. The CBF and CFeCBF mod-
els maintain their almost stable recommendation quality while CF increases.
However, as opposed to the previous case, we can see that the CF advantage
grows less steeply with respect to CFeCBF even though the train data is much
denser, 1 and 4 as opposed to 4 · 10−1. Moreover, the CF Item Coverage is
comparable or higher than CFeCBF. This allows to state that the behaviour
of the CF algorithm in the random sampling experiment is strongly influenced
by the significant popularity bias of the dataset.

To summarize, in terms of accuracy metrics CF algorithms are able to
outperform CBF and CFeCBF when even just a few interactions are avail-
able, more so if the dataset has a strong popularity bias. However CBF and
CFeCBF maintain a sizable advantage in terms of diversity metrics and Item
Coverage. Depending on the specific use-case or application, and therefore the
desired balance between accuracy and catalogue exploration, a different strat-
egy may be adopted. If the main focus is on accuracy, then as soon as the
item has an interaction it can be considered as warm. The reader should note
that, while Movielens has a high popularity bias, other datasets with a less
pronounced bias will exhibit a less steep CF quality improvement. If the focus
is on improving catalogue exploration to reduce the popularity bias effect then
the target number of interactions per item may be pushed further.
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5 Experimental study B: Insights from a preliminary user study
about perceived quality

In this section, we describe an empirical study whose goal is not to recom-
mend new movies, as in the experimental study A, but to understand to what
extent the proposed movie genome is perceived as useful when deployed in a
real MRS. The developed system uses a pure CBF recommender based on the
KNN algorithm and measures the utility of the recommendation as perceived
by the user in terms of accuracy, novelty, diversity, level of personalization,
and overall satisfaction. In this study, we intentionally avoid the discussion
of hybridization and focus instead only on six unimodal recommendation ap-
proaches, classifiable in 3 categories: (i) metadata: genre and tag, (ii) audio:
i-vectors and BLF, and (iii) visual: Deep features and AVF. We use only the
unimodal recommendation schemes presented in the experimental study A.
The reason for this is to avoid overloading users with too many recommenda-
tion choices, and thus to be able to obtain more reliable responses from users
collectively. Note that in this study, the tags feature is considered because, as
stated, the study’s focus is no longer on new movie recommendation (as in
study A) and tags serve as a rich semantic baseline.

Our preliminary studies in a similar direction have been published in [39]
which focused on a single visual modality [39], and in [22], which used a lower
number of participants (74 vs. 101). In addition, compared to [22], we per-
formed better sanity checks and removed unreliable user input. Further infor-
mation is provided in the following sections.

5.1 Perceived quality metrics

The goal of the current study is to measure how the user perceives the qual-
ity of the proposed recommender system. Perceived quality is as an indirect
indicator of a recommenders potential for persuasion [18]. It is defined as the
degree to which the users judge recommendations positively and appreciate
the overall experience of the recommender system. We operationalize the no-
tion of perceived quality in terms of five metrics [37]: Perceived accuracy (also
called Relevance) — measures how much the recommendations match users’
interests, preferences, and tastes; Satisfaction — measures global users’ feel-
ings about their experience with the recommender system; Understands me —
relates to perceived personalization or the user’s perception that the recom-
mender understands their tastes and can effectively adapt to them; Novelty18

— measures the extent to which users receive new (unknown) recommenda-
tions; Diversity — measures how much users perceive recommendations as
different from each other, e.g., movies from different genres.

18 Note that we could not use Novelty as an evaluation criterion in study A because Novelty
is defined in terms of item popularity, which is available for warm items but not for cold
items.
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5.2 Evaluation protocol

To measure the user’s perception of the recommendation lists according to
the five quality metrics explained above, we adopt the questionnaire proposed
in [60]. This instrument contains 22 questions to assess various aspects of the
recommendation lists. For convenience, these questions are shown in Table 8.
As suggested by the authors from [37], the questions are asked in a comparative
mode instead of seeking absolute values.

Fig. 6: Screenshots of the MISRec web application, designed for movie rec-
ommendation and empirical studies. The user needs to register, answer de-
mographic and personality questionnaires, select his/her favorite genre, and
rate some movies by looking at their trailers. Then, he/she is presented with
3 recommendation lists and a list of questions about perceived quality.

We developed MISRec (Mise-en-Scène Movie Recommender), a web-based
testing framework for the movie search and recommendation domain, which
can easily be configured to facilitate the execution of controlled empirical
studies. Some screenshots of the system are presented in Figure 6. MISRec
is powered by a pure CBF algorithm based on KNN and supports users with a
wide range of functionalities common in online video-streaming services such
as Netflix19. MISRec contains the same catalog of movies used in the first
study (see Section 4). Users can browse the catalog of movies, retrieve de-
tailed descriptions of each, rate them, and receive recommendations. MISRec
also embeds an online questionnaire system that allows researchers to eas-
ily collect quantitative and qualitative information from the user. The first
prototype of MISRec was used for conducting an empirical study on the con-

19 https://www.netflix.com

https://www.netflix.com
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tribution of stylistic visual features to movie recommendation, and the results
were published in [39]. A more recent development of MISRec powered by the
proposed movie genome features was published in [22]. An extension of the
system was also developed in [32] to use the system in an interactive manner
e.g., for kid movie recommendation using cover photos of the movies as the
system activator.

Our main target audience is users aged between 19 and 54 who have some
familiarity with the use of the web but have never used MISRec before the
study (to control for the potentially confounding factor of biases or misconcep-
tions derived from previous uses of the system). The total number of recruited
subjects who also completed the task was 101 (73 male, 28 female, mean age
25.64 years, std. 6.61 years, min. 19 years, max. 54 years). Data collection were
carried out mostly from master students at three universities: Politecnico Di
Milano Italy, JKU Linz Austria and Politehnica di Bucharest, Romania attend-
ing the course of Recommender Systems or similarly related courses. They were
trained to perform the study, were given written instructions on the evaluation
procedure, and were regularly supervised by Ph.D. students and a PostDoc re-
searcher during their activities. The interaction begins with a sign-up process,
where each participant (user) is asked to specify his/her e-mail address, user
name, and password (see Figure 6 top-middle). For users who wish to remain
anonymous, we provide the option to conceal their true email address. After-
wards, the user is asked to provide basic demographics (age, gender, education,
nationality, and number of movies watched per month, consumption channels,
some optional social media IDs, such as Facebook, Twitter, and Instagram).
After the user has registered for the system and provided his/her basic de-
mographic information, he/she is asked to fill out the Ten-Item Personality
Inventory (TIPI) questionnaire (see Figure 6 middle-left) so that the system
can assess his/her Big Five personality traits (openness, conscientiousness,
extroversion, agreeableness, and neuroticism) [79]. Then, for preference elici-
tation [15], the user is invited to browse the movie catalog from his/her favorite
genre and to scroll through productions from different years in a user-friendly
manner (see Figure 6 center and middle-right). The user initially selects four
movies as his/her favorites.

The user can watch the trailers for the selected movies and provide ratings
for them using a 5-level Likert scale (1 = low interest in/appreciation for the
movie to 5 = high interest in/appreciation for the movie). The user can also
report a movie (if the trailer is not correctly displayed) and the movie will be
skipped (see Figure 6 bottom-left). After that, on the basis of these ratings and
the content features described in Section 3.1, three categories of recommen-
dation lists are presented to the user: (i) audio-based recommendation using
BLF or i-vectors as features, (ii) visual-based recommendation using AVF or
Deep as features, (iii) metadata-based recommendation using genre or tag as
features. In each of the three recommendation categories, the recommenda-
tions are created using one of the two recommendation approaches (e.g., BLF
or i-vectors for (i), and so on), chosen randomly. Since watching trailers is a
time-consuming process, we decided to show only four recommendations in
each of the three lists.
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It is important to note that since we do not wish to overload the user
with too much information, we avoid presenting him/her with six recommen-
dation lists using all of the features. This would be the case in a within-subject
design, where each subject uses all variants of the factorial designs simultane-
ously, i.e., six recommendation approaches in this case. Instead, we decided to
use a between-subject design, where factorial designs are randomized for a given
subject. Since our final goal is to have the user compare the three recommen-
dation classes (i.e., audio vs. visual vs. metadata) at the same time, the way we
implemented the between-subject design randomizes each of the two instances
of each category for a given user. Therefore, each user compares one out of
eight possible combinations: (BLF, AVF, genre), (i-vector, AVF, genre), (BLF,
AVF, tag), (i-vector, AVF, tag) and so forth20. This gives us more flexibility
in handling all this information and obtaining reliable responses. Finally, to
avoid possible biases or learning effects, the positions of the recommendation
lists are randomized for each user.

5.3 Results

In this section, we present the user-perceived accuracy, satisfaction, person-
alization, diversity, and novelty. Before analyzing the survey responses, we
cleaned the data by removing users who did not complete the questionnaire.
We also removed users who were too fast in giving answers (less than 15% of
the median time of all users) since we do not consider these users reliable. As
the results of these filtering steps, 21 users are filtered out. Furthermore, users
were asked to specify how many of the movies in each recommendation list
they have seen. A list is included in the analysis only if the user has seen at
least one movie from it. For example, if a user chooses a list as the recommen-
dation most accurately matching his/her taste but has previously specified
that he/she has not seen any movie from that list, we discard that list from
his/her responses.

We compute a score for each recommender/feature with respect to the
five performance measures. When recommendation lists are presented to the
user, he/she has to choose one list out of the three as an answer to each
question (cf. Table 8). Each selected list counts for a vote for the respective
recommender that has created the list. Note that answers/scores given to
questions marked with a + contribute positively to the final score, whereas
scores to questions marked with a - contribute negatively. Finally, all votes
given to each recommender are summed along each dimension (performance
measure) and expressed as percentages, i.e., the relative frequency with which
each recommender has been selected as the best one. The final results for the
five dimensions are presented in Table 9 and discussed below.

20 Note that we could not use tag as a feature in Study A since tags are user-generated
content. In cold items, no interactions with users have occurred yet; therefore, no tag could
have been provided as a feature. Tags could be obtained via cross-domain techniques, but
those are a vast research area and outside the scope of this paper. Tags could also be obtained
by manual/editorial tagging, but that would be time-consuming and expensive, and therefore
not suitable for a high rate of new items, which is the scenario of main interest for this paper.
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Perceived Accuracy/Relevance: the following algorithms are perceived as
the most accurate (relevant) by the subjects: tag, genre, and the SoA vi-
sual deep feature, with 26%, 25%, and 24% of the votes, respectively. User-
generated tags are rich semantic descriptors and, as expected, the respective
feature is evaluated the best by the subjects; however, the difference from
genre and deep features remains very small (1 to 2 %). Meanwhile, the lowest
performance is obtained by the traditional audio and visual features BLF and
AVF with 3% and 8% of the votes, respectively. I-vector aggregates 13% of the
votes. These results are in agreement with our expectations in that, as a stan-
dalone feature, the proposed SoA feature, deep, and i-vector show the most
promising results compared with traditional multimedia features; e.g., Deep
achieves a result of 24% in comparison with 8% for AVF, which represents an
improvement of about 300%.

Understands Me and Satisfaction: the results of users’ perceived personal-
ization (captured by the questions in the “Understands Me” category) and the
overall feeling of the experience with the recommender system (captured by
the questions in the “Satisfaction” category) show superior performance for
Deep and tag features, with 32% and 31% of the votes, while genre is ranked
lower, with 24% of the votes. For user satisfaction, the best performance is
perceived for tag, deep, and genre features, with 25%, 24%, and 24% of the
user votes, respectively. The lowest performance is obtained by the traditional
audio and visual features (between 7% and 10%). We can also note that the
results along the above perceived quality metrics are highly correlated (Pear-
son’s correlation coefficient is 0.9735). The only exception is audio, in which
we can find a difference in two dimensions between the performance obtained
by SoA i-vectors (compare 3.6% vs. 11%) and by traditional BLFs (compare
1.2% vs. 6%). The results of “Understands me” and “Satisfaction” are also
highly correlated with perceived accuracy (Pearson’s correlation coefficients
are 0.9390 and 0.9897, respectively.). This can indicate that the users’ percep-
tion of personalization and satisfaction is the same as accuracy and that users
respond to the questions belonging to these categories in a similar way.

Diversity : the results for the perceived diversity indicate that the best per-
formance is achieved by genre (29%) - substantially higher than i-vector, Deep,
and tag, with 19%, 18%, and 16% of the votes, respectively. On the other hand,
both traditional visual and audio features, AVF and BLF, show the lowest per-
ceived diversity, attracting only 13% and 6% of the votes, respectively. The
results for diversification are slightly different than those gained in our orig-
inal user study [22] and show that users perceived recommendation by genre
the most diverse (while perceived highly relevant too). Perhaps this is because
users do not mentally compute list diversification based on genre diversity but
also consider other attributes (e.g., the appearance of the DVD cover) when
they are asked to indicate the most diversified recommendation list. Another
reason could be that one of the questions explicitly asks for diversity of mood,
and the same genre can have movies with very different moods (e.g., in sci-fi).

Novelty : results for novelty are surprising in several ways. Firstly, it is the
traditional visual features, AVF, which have the highest amount of perceived
novelty, gaining as much as 31% of votes, followed by the SoA audio and
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visual features i-vector and deep with 21% and 19% of the votes, respectively.
Meanwhile, the tag feature has attracted a very small amount, i.e., only 5%, of
the scores for perceived novelty. Since tags are user-assigned, they have a high
semantic content and capture something specific about the user perception of
the movie. Therefore, similar tags may yield to recommendations not perceived
as novel.

Globally, the results of our study on perceived recommendation quality
indicate that perceived quality of recommendations is high for the SoA visual
and audio features (Deep and i-vector) along most investigated performance
measures. The exception is the user’s perceived personalization (“Understands
Me”) for which i-vector performs poorly (but Deep visual performs best). For
the remaining dimensions, these SoA features are ranked in the top 3 of all
investigated features. Especially when it comes to novelty, SoA audio and
visual features by far outperform metadata features. Overall, each feature has
its merits, which again support our proposal for multimodal recommendation
approaches.

6 Conclusions and future perspectives

In this work, we presented a framework for new movie recommendation by
exploiting rich item descriptors and a novel recommendation model. We com-
pared our system to some standard metadata-based methods that use genres
and casts (editorial metadata). Specifically, the proposed system integrates
multimedia aesthetic visual features and audio block-level features, as well as
novel, state-of-the-art deep visual features and i-vector audio features, together
with genre and cast features, all of which are referred to as the movie genome.
For exploiting the complementary information of different modalities, we pro-
posed CCA to fuse movie genome descriptors into shorter and stronger de-
scriptors. Lastly, we presented a novel recommendation model that leverages a
two-step approach named collaborative-filtering-enriched content-based filter-
ing (CFeCBF). It exploits the collaborative knowledge of warm items (videos
with interactions) to weight content information for cold items (videos with-
out interactions) and improve the ability to recommend cold videos, for which
interactions and user-generated content are rare or unavailable. The proposed
system represents a practical solution for alleviating the CS problem, in par-
ticular, the extreme CS new item problem, where newly added items lack any
interaction and/or user-generated content.

6.1 Discussion of the results

For evaluation, we conducted two empirical studies: (i) a system-centric study
to measure the offline quality of recommendations in terms of accuracy (NDCG
and MAP) and beyond accuracy (list diversity, distributional diversity, and
item coverage) (cf. Section 4); (ii) a preliminary, user-centric online experiment
to measure different subjective metrics, including relevance, satisfaction, and
diversity (cf. Section 5). In both studies, we used a dataset of more than 4,000



Movie Genome: Alleviating New Item Cold Start in Movie Recommendation 39

movie trailers, which makes our approach more versatile, because trailers are
more readily available than full movies.

In the first study, visual and audio features generally outperform the meta-
data features with respect to the two tested accuracy measures, with an av-
erage growth factor of 32% along NDCG (min 14% and max 53%) and 23%
along MAP (min 7% and max 42%). The real improvement, however, is in
the final system performance, in which the proposed system outperforms the
baseline by a substantial margin of 80% along NDCG and 73% along MAP
and also outperforms the simpler multimodal recommender model using CCA
in a pure CBF system by 67% for NDCG and 68% for MAP. These results
are promising and indicate the capability of our recommendation model to
improve the utility of new item recommendation by leveraging rich CF data
for existing warm items and utilizing them as feature weights to improve the
content information in pure CBF.

Moreover, in terms of beyond-accuracy measures, we can see that the genre-
based recommender exhibits the lowest diversity, as could be expected. In ad-
dition, our results show that the multimodal recommender is able to provide
substantially higher coverage and improved distributional diversity on all re-
ported metrics. This means that a multimodal recommender is less prone to
popularity bias; in particular, multimodal recommendations generated by our
CFeCBF model show a significant improvement along (almost) all reported
beyond-accuracy metrics, while not penalizing the accuracy and even improv-
ing it substantially.

When an item transition from cold to warm we can see that CF is able to
outperform CFeCBF very soon in terms of accuracy metrics on a dataset with
significant popularity bias, while CFeCBF still exhibit much better ability to
leverage all the available items. The strength of the two algorithms may be
combined allowing to exploit the superior recommendation quality of CF for
warm items and the much greater coverage of CFeCBF to recommend cold
items, whose low popularity renders the transition to warm slower.

In the user study, results show that the perceived recommendation for
state-of-the-art visual (Deep) and audio (i-vector) features are meaningful.
With the exception of the user’s perceived personalization, in which i-vector
performed poorly, these audio and visual features are ranked in the top 3 of
all investigated features. In some cases, such as for the perceived novelty, the
improvement of these features over metadata was significantly high. Overall,
the results of the user study show that each feature has advantages and supports
our proposal for multimodal recommendation approaches.

6.2 Answers to research questions

RQ1: Can the exploitation of movie genome describing rich item information
as a whole, provide better recommendation quality compared with traditional
approaches that use editorial metadata such as genre and cast in CS scenar-
ios? As the experiments have shown, multimedia features can provide a good
alternative to editorial metadata such as genre and cast in terms of both ac-
curacy and beyond-accuracy measures. The use of multimedia features can
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allow to increase the recommendation quality in terms of accuracy while also
improving the ability of the recommender to leverage the whole catalogue of
items.

RQ2: Which visual and audio information better captures users’ movie pref-
erences in CS scenarios? The most important improvement for the accuracy
metric was achieved by exploiting the state-of-the-art deep features for the
visual modality but traditional block-level features for the audio modality.

RQ3: Could we leverage user interaction to enrich cold item information? We
proved that it is possible to effectively leverage user interactions and enrich
the item descriptors by learning a set of feature weights associated with the
descriptors. This would result in improving the recommendation quality of
cold items over current editorial baselines (genre and cast).

6.3 Limitations

Recommendation model. The proposed recommender model has a few limita-
tions. Firstly, since it leverages item features, the quality and noisiness of item
features have an impact on the ability to learn good feature weights. If an
item has too few features, the resulting recommendations will exhibit limited
diversity and the weights might embed some popularity bias. This is visible
in Table 4 for AVF + Genre, which, while having good recommendation qual-
ity, exhibits lower InterL diversity with respect to the other cases. On the
other hand, if the number of features is too high, the number of collaborative
similarities might not be enough to ensure good weighs are learned.

Secondly, as the model leverages a collaborative model, this feature weight-
ing scheme will not be applicable to any scenario. If the user-item interactions
are too few, it is well known that the collaborative model will perform poorly
in comparison to a pure CBF recommender. If this is the case, the learned
weights will be approximating a poor collaborative model and therefore the
resulting recommendations will not improve. Even so, however, it may still be
possible to leverage a collaborative model on a smaller and denser portion of
the dataset to learn only some of the weights. This is an aspect that can be
studied more in detail.

Thirdly, in the case of Boolean features, CFeCBF is sensitive to items with
very sparse features due to the fact that it can learn weights only for features
available for cold items. Feature sparsity has the dual effect of both increasing
the probability of new items having many new features, previously unobserved,
and reducing the degree of freedom of the model.

Finally, in our previous study [27], we concluded concluded that trailers and
movies share similar characteristics in the recommendation scenario. However,
the dataset used in [27] was rather small (167 full movies and corresponding
trailers were used for comparison). Also, the number of visual features was
limited (only five features, cf. [89]). Due to these restrictions, the generaliz-
ability of our findings in [27] might be restricted. Nevertheless, we argue that
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using trailers instead of full-length movies serves as a good proxy and has
several advantages: trailers are accessible, are sensibly shorter that the entire
movie, and preserve the main idea of the movie since they are designed to
trigger the viewers interest in watching the entire movie. Results in the pa-
per at hand show that the performance recommendation system that exploits
movie genome is better in comparison with editorial metadata (using genre or
cast). We believe this can be seen as a breakthrough to demonstrate that they
can effectively replace the full movies. Lastly, depending on the strength of the
video descriptors with respect to the CF information, the items may transition
from cold to warm after even a single interaction. In popularity biased datasets
a premature switch from CFeCBF to CF may result in poor catalogue explo-
ration and therefore limited overall recommender effectiveness. This effect can
be minimized by adopting strategies to allow a gradual switch between the two
allowing the less popular items more time to collect the interactions they need
to become warm, while benefitting from the higher recommendation quality of
a CF for warm items. The choice of an optimal point where to switch between
CFeCBF and CF remains challenging.

User study limitations. The reported user study results should be considered
preliminary. In fact, given the relatively low number of participants, the results
may not be statistically significant. Given the complexity of the questionnaire,
which takes more than half an hour to complete, as well as due to the specificity
of the movie dataset used, i.e., the movies tend to be classic ones not easily
available to the younger generation, it is very difficult to find reliable users
and motivate them to participate in the study, even when considering a paying
platform such as crowdsourcing.

6.4 Future perspectives

We believe our proposed movie recommendation framework can pave the way
for a new paradigm in new product recommendation by exploiting CFeCBF
models built on top of rich item descriptors extracted from content. Examples
of such products include fashion (images), music (audio), and tourism (both
images and audio) and generic videos. As a related future research line, we
would like to understand in what ways affective metadata (metadata that
describe the user’s emotions) can be used for CBF of videos/movies, similar
to the research [104] carried out for images.

Regarding the carried out user study, currently it involves 101 subjects.
This is while according to [59], approximately 73 subjects are necessary in
every configuration to ensure statistical significance of results (i.e., about 600
subjects in total). This is an important limitation of our current work, which
we plan to overcome in the future by hiring a larger number of reliable subjects.
Furthermore, we plan to validate the generalization power of our new movie
recommender model on video datasets of a different nature, such as full-length
movies, movie clips and user-generated videos. An initial attempt at the former
was published in our work [22] and at the latter in [21], whose authors plan to
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release a publicly available dataset of movie clips. Part of these data is used
in the MediaEval 2018 task “Recommending Movies Using Content”.21

Last but not least, a feature analysis will be conducted to better understand
how movie genome features contribute to the success of the combined features
as part of future work.
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32. Deldjoo, Y., Frà, C., Valla, M., Paladini, A., Anghileri, D., Tuncil, M.A., Garzotta,
F., Cremonesi, P., et al.: Enhancing childrens experience with recommendation sys-
tems. In: Workshop on Children and Recommender Systems (KidRec’17)-11th ACM
Conference of Recommender Systems, pp. N–A (2017)



44 Deldjoo et al.

33. Deldjoo, Y., Schedl, M., Cremonesi, P., Pasi, G.: Content-Based Multimedia Recom-
mendation Systems: Definition and Application Domains. In: Proceedings of the 9th
Italian Information Retrieval Workshop (IIR 2018). Rome, Italy (2018)

34. Deldjoo, Y., Schedl, M., Hidasi, B., Kness, P.: Multimedia recommender systems. In:
Proceedings of the 12th ACM Conference on Recommender Systems. ACM (2018).
DOI 10.1145/3240323.3241620

35. Eghbal-Zadeh, H., Lehner, B., Dorfer, M., Widmer, G.: CP-JKU submissions for
DCASE-2016: a hybrid approach using binaural i-vectors and deep cnns. Tech. rep.,
DCASE2016 Challenge (2016)

36. Eghbal-Zadeh, H., Schedl, M., Widmer, G.: Timbral modeling for music artist recog-
nition using i-vectors. In: Signal Processing Conference (EUSIPCO), 2015 23rd Euro-
pean, pp. 1286–1290. IEEE (2015)

37. Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of
differences in recommender algorithms. In: Proceedings of the 8th ACM Conference
on Recommender Systems, RecSys ’14, pp. 161–168. ACM, New York, NY, USA (2014).
DOI 10.1145/2645710.2645737. URL http://doi.acm.org/10.1145/2645710.2645737

38. Elahi, M., Braunhofer, M., Gurbanov, T., Ricci, F.: User Preference Elicitation, Rating
Sparsity and Cold Start, chap. Chapter 8, pp. 253–294. DOI 10.1142/9789813275355
0008. URL https://www.worldscientific.com/doi/abs/10.1142/9789813275355_
0008

39. Elahi, M., Deldjoo, Y., Bakhshandegan Moghaddam, F., Cella, L., Cereda, S., Cre-
monesi, P.: Exploring the semantic gap for movie recommendations. In: Proceedings
of the Eleventh ACM conf. on Recommender Systems, pp. 326–330. ACM (2017)

40. Ellis, D.P.: Classifying music audio with timbral and chroma features. In: ISMIR,
vol. 7, pp. 339–340 (2007)

41. Fatemi, N., Mulhem, P.: A conceptual graph approach for video data representation
and retrieval. In: International Symposium on Intelligent Data Analysis, pp. 525–536.
Springer (1999)

42. Ferrari Dacrema, M., Gasparin, A., Cremonesi, P.: Deriving item features relevance
from collaborative domain knowledge. In: Proceedings of KaRS 2018 Workshop on
Knowledge-aware and Conversational Recommender Systems. ACM (2018)

43. Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.: Learn-
ing attribute-to-feature mappings for cold-start recommendations. In: Data Mining
(ICDM), 2010 IEEE 10th International Conference on, pp. 176–185. IEEE (2010)

44. de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware
content-based recommender systems. In: Recommender Systems Handbook, pp. 119–
159. Springer (2015)

45. Haas, A.F., Guibert, M., Foerschner, A., Calhoun, S., George, E., Hatay, M., Dins-
dale, E., Sandin, S.A., Smith, J.E., Vermeij, M.J., et al.: Can we measure beauty?
computational evaluation of coral reef aesthetics. PeerJ 3, e1390 (2015)

46. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: Fully automatic face normalization
and single sample face recognition in unconstrained environments. Expert Systems
with Applications 47, 23–34 (2016)

47. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS) 5(4), 19 (2016)

48. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI
10.1145/963770.963772

49. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

50. Jalili, V., Matteucci, M., Goecks, J., Deldjoo, Y., Ceri, S.: Next generation indexing
for genomic intervals. IEEE Transactions on Knowledge and Data Engineering (2018)
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Table 3: Performance of various features: i-vector (Audio), BLF (Audio), Deep
(Visual), and AVF (Visual), editorial-metadata, in terms of accuracy metrics
NDCG and MAP. For fusion, we report the results for the CCA fusion varia-
tion (either ccat or sum) that lead to the best performance (cf. Section 3.2).
The features (or feature combination) which outperform genre significantly are
shown in bold (p < 0.05). Abbreviations: A - Audio, V - Visual, EM - Editorial
Metadata.

Feature name CCA Accuracy Metrics

Fusion NDCG MAP

B
a
se cast (EM) - 0.0088 0.0041

genre (EM) - 0.0083 0.0042

U
n
im

o
d
a
l i-vec (A: SoA) - 0.0095 0.0045

BLF (A: traditional) - 0.0111 0.0055

Deep (V: SoA) - 0.0127 0.0060

AVF (A: traditional) - 0.0108 0.0047

M
u
lt
im

o
d
a
l
(p

u
r
e
C
B
F
)

i-vec + Genre (A + EM) sum 0.0101 0.0046

i-vec + Deep (A + V) sum 0.0089 0.0042

i-vec + AVF (A + V) ccat 0.0077 0.0038

i-vec + BLF (A) sum 0.0094 0.0046

AVF + Genre (V + EM) sum 0.0086 0.0039

AVF + BLF (V + A) sum 0.0091 0.0052

AVF + Deep (V) sum 0.0086 0.0041

Deep + Genre (V + EM) sum 0.0078 0.0038

Deep + BLF (V + A) sum 0.0102 0.0053

BLF + Genre (A + EM) ccat 0.0090 0.0046

M
u
lt
im

o
d
a
l
(C

F
e
C
B
F
)

i-vec+Genre (A + EM) sum 0.0186 0.0078

i-vec + Deep (A + V) sum 0.0176 0.0083

i-vec + AVF (A + V) sum 0.0121 0.0062

i-vec + BLF (A) ccat 0.0177 0.0083

AVF+Genre (V + EM) sum 0.0192 0.0097

AVF + BLF (V + A) sum 0.0102 0.0048

AVF + Deep (A + V) sum 0.0191 0.0097

Deep + Genre (V + EM) sum 0.0117 0.0059

Deep + BLF (A) sum 0.0111 0.0052

BLF + Genre (A + EM) ccat 0.0120 0.0059
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Table 4: Performance of various features in terms of beyond-accuracy metrics
for list diversity. For fusion, we report the results for the CCA fusion variation
(either ccat or sum) that lead to the the best performance (cf. Section 3.2).
Results in bold show the features (or feature combinations) that outperform
genre significantly (p < 0.05) along the respective metric. Abbreviations: A -
Audio, V - Visual, EM - Editorial Metadata.

Feature name CCA List Diversity

Fusion IntraL InterL

B
a
se

cast (EM) - 0.8990 0.8794

genre (EM) - 0.8886 0.9035

U
n
im

o
d
a
l i-vec (A: SoA) - 0.8994 0.9322

BLF (A: traditional) - 0.8994 0.9522

Deep (V: SoA) - 0.8992 0.8641

AVF (A: traditional) - 0.8994 0.9528

M
u
lt
im

o
d
a
l
(p

u
r
e
C
B
F
)

i-vec + Genre (A + EM) sum 0.8965 0.9577

i-vec + Deep (A + V) sum 0.8994 0.9602

i-vec + AVF (A + V) ccat 0.8994 0.7682

i-vec + BLF (A) ccat 0.8995 0.8772

AVF + Genre (V + EM) (sum, ccat) 0.8927 0.9536

AVF + BLF (V + A) (sum, ccat) 0.8995 0.8724

AVF + Deep (V) ccat 0.8994 0.6890

Deep + Genre (V + EM) ccat 0.8964 0.9633

Deep + BLF (V + A) ccat 0.8995 0.9548

BLF + Genre (A + EM) ccat 0.8969 0.9616

M
u
lt
im

o
d
a
l
(C

F
e
C
B
F
)

i-vec + Genre (A + EM) sum 0.8981 0.9304

i-vec + Deep (A + V) sum 0.8995 0.9535

i-vec + AVF (A + V) (ccat, ssum) 0.8995 0.9584

i-vec + BLF (A) sum 0.8995 0.9533

AVF + Genre (V + EM) (sum, ccat) 0.8992 0.7532

AVF + BLF (V + A) sum 0.8995 0.9373

AVF + Deep (V) ccat 0.8995 0.9549

Deep + Genre (V + EM) (ccat, sum) 0.8983 0.9361

Deep + BLF (V + A) ccat 0.8995 0.9599

BLF + Genre (A + EM) ccat 0.8986 0.9396
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Table 5: Performance of various features in terms of beyond-accuracy metrics
for aggregate diversity. Results in bold show the features (or feature com-
binations) that outperform genre significantly (p < 0.05). For each feature
combination, we only report the results for the CCA method that has the best
performance (either ccat or sum). Abbreviations: A - Audio, V - Visual, EM -
Editorial Metadata, Entropy - Shannon Entropy, HHI - Herfindahl, Item Cov
- Item Coverage.

Feature name CCA Distributional Diversity Item

Fusion Gini Entropy HHI Cov

B
a
se

cast (EM) - 0.7652 7.2672 0.9879 0.5348

genre (EM) - 0.7424 7.4525 0.9903 0.5435

U
n
im

o
d
a
l i-vec (A: SoA) - 0.7055 8.2934 0.9932 0.9276

BLF (A: traditional) - 0.6614 8.5983 0.9952 0.9412

Deep (V: SoA) - 0.7992 7.2659 0.9864 0.6615

AVF (A: traditional) - 0.6583 8.6165 0.9952 0.9336

M
u
lt
im

o
d
a
l
(p

u
r
e
C
B
F
)

i-vec + Genre (A + EM) sum 0.6510 8.6752 0.9957 0.9431

i-vec + Deep (A + V) sum 0.6283 8.7951 0.9960 0.9960

i-vec + AVF (A + V) ccat 0.7794 6.1634 0.9768 0.2569

i-vec + BLF (A) ccat 0.8022 7.2558 0.9877 0.6412

AVF + Genre (V + EM) ccat 0.6754 8.4935 0.9953 0.8811

AVF + BLF (V + A) (ccat, *: sum) 0.6595* 6.7429 0.9872 0.3014

AVF + Deep (V) (ccat) 0.8037 5.7369 0.9689 0.2147

Deep + Genre (V + EM) (ccat, *:sum) 0.6361 8.7644 0.9963 0.9388*

Deep + BLF (V + A) (ccat) 0.6402 8.7184 0.9954 0.9655

BLF + Genre (A + EM) (ccat) 0.6381 8.7520 0.9961 0.9459

M
u
lt
im

o
d
a
l
(C

F
e
C
B
F
)

i-vec + Genre (A + EM) sum 0.7232 8.0490 0.9930 0.7769

i-vec + Deep (A + V) sum 0.6719 8.5653 0.9953 0.9275*

i-vec + AVF (A + V) sum 0.6342 8.6499 0.9958 0.8736

i-vec + BLF (A) sum 0.6667 8.5831 0.9953 0.9299

AVF + Genre (V + EM) ccat 0.7742 6.0510 0.9753 0.2345

AVF + BLF (V + A) (sum, *:ccat) 0.7150 8.0789 0.9937 0.7664*

AVF + Deep (V) ccat 0.6504 8.5740 0.9955 0.8691

Deep + Genre (V + EM) sum 0.7170 8.1647 0.9936 0.8258

Deep + BLF (V + A) ccat 0.6439 8.7395 0.9960 0.9595

BLF + Genre (A + EM) ccat 0.7007 8.2965 0.9939 0.8619
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Table 6: Results for the cold to warm transition scenario for accuracy metrics
and Item Coverage. In evaluation scenario Cold the test items are cold. In
Warm 0.5% the 0.5% of existing interactions have been added to the cold
items, while in Warm 2.0% its the 2.0%.

Evaluation scenario

Feature name Cold Warm 0.5 % Warm 2.0 %

NDCG MAP Item
Cov NDCG MAP Item

Cov NDCG MAP Item
Cov

B
a
se

Cast (EM) 0.0087 0.0040 0.5327 0.0087 0.0040 0.5327 0.0087 0.0040 0.5333

Genre (EM) 0.0114 0.0051 0.5987 0.0114 0.0051 0.5987 0.0114 0.0051 0.5991

M
u
lt
im

o
d
a
l
(C

F
e
C
B
F
)

Cast (EM) 0.0095 0.0046 0.7130 0.0095 0.0046 0.7134 0.0095 0.0045 0.7126

Genre (EM) 0.0082 0.0039 0.4867 0.0088 0.0042 0.5064 0.0071 0.0033 0.4215

i-vec + Genre (A + EM) 0.0094 0.0040 0.7754 0.0080 0.0039 0.8128 0.0113 0.0054 0.8407

i-vec + Deep (A + V) 0.0082 0.0035 0.9263 0.0105 0.0048 0.9237 0.0118 0.0052 0.9183

i-vec + AVF (A + V) 0.0086 0.0045 0.7665 0.0109 0.0051 0.8492 0.0088 0.0041 0.8285

i-vec + BLF (A) 0.0115 0.0055 0.7227 0.0110 0.0053 0.7213 0.0114 0.0058 0.7598

AVF + Genre (V + EM) 0.0139 0.0067 0.0522 0.0136 0.0062 0.1563 0.0216 0.0109 0.2999

AVF + BLF (V + A) 0.0075 0.0036 0.6423 0.0081 0.0040 0.5446 0.0108 0.0053 0.6187

AVF + Deep (A + V) 0.0093 0.0042 0.7905 0.0098 0.0045 0.8575 0.0105 0.0049 0.8488

Deep + Genre (V + EM) 0.0087 0.0042 0.7447 0.0108 0.0052 0.6887 0.0097 0.0044 0.7029

Deep + BLF (A) 0.0094 0.0042 0.8329 0.0095 0.0043 0.8742 0.0086 0.0041 0.9346

BLF + Genre (A + EM) 0.0072 0.0034 0.7912 0.0078 0.0038 0.8071 0.0093 0.0041 0.7959

C
F

RP3beta 0.0000 0.0000 0.0000 0.0900 0.0494 0.0613 0.1185 0.0884 0.2030
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Table 7: Results for the cold to warm transition scenario for accuracy metrics
and Item Coverage. In evaluation scenario Cold the test items are cold, in
Warm 1 each test item has exactly 1 interaction in the train set, in Warm 5
each test items has 5 interactions in the train set.

Evaluation scenario

Feature name Cold Warm 1 Warm 5

NDCG MAP Item
Cov NDCG MAP Item

Cov NDCG MAP Item
Cov

B
a
se

Cast (EM) 0.0059 0.0031 0.5256 0.0059 0.0031 0.5329 0.0047 0.0025 0.5416

Genre (EM) 0.0058 0.0031 0.5925 0.0058 0.0031 0.5963 0.0053 0.0027 0.5999

C
F
e
C
B
F

Cast (EM) 0.0060 0.0031 0.7038 0.0061 0.0031 0.7166 0.0047 0.0024 0.7308

Genre (EM) 0.0056 0.0029 0.3641 0.0078 0.0041 0.5230 0.0053 0.0027 0.4293

i-vec + Genre (A + EM) 0.0053 0.0027 0.7973 0.0060 0.0032 0.7790 0.0046 0.0023 0.7976

i-vec + Deep (A + V) 0.0064 0.0033 0.9154 0.0054 0.0027 0.9168 0.0048 0.0026 0.9408

i-vec + AVF (A + V) 0.0054 0.0026 0.6817 0.0063 0.0035 0.8447 0.0044 0.0021 0.8358

i-vec + BLF (A) 0.0055 0.0031 0.7157 0.0061 0.0030 0.7416 0.0036 0.0017 0.7552

AVF + Genre (V + EM) 0.0050 0.0025 0.2887 0.0070 0.0033 0.1348 0.0065 0.0036 0.2179

AVF + BLF (V + A) 0.0057 0.0029 0.4980 0.0057 0.0031 0.5549 0.0048 0.0028 0.5670

AVF + Deep (A + V) 0.0062 0.0032 0.8689 0.0054 0.0028 0.8003 0.0047 0.0023 0.8527

Deep + Genre (V + EM) 0.0055 0.0032 0.7747 0.0058 0.0032 0.6469 0.0047 0.0025 0.7211

Deep + BLF (A) 0.0053 0.0027 0.9397 0.0046 0.0022 0.9318 0.0048 0.0025 0.9416

BLF + Genre (A + EM) 0.0051 0.0027 0.8037 0.0052 0.0027 0.7722 0.0044 0.0021 0.8222

C
F

RP3beta 0.0000 0.0000 0.0000 0.0327 0.0180 0.8783 0.0507 0.0269 0.9012



56 Deldjoo et al.

Table 8: The list of questions [37,60] used to measure the perceived quality of
recommendations. Note that answers/scores given to questions marked with a
+ contribute positively to the final score, whereas scores to questions marked
with a - are subtracted.

Factor / Question (W. l. = Which list, W. r. = Which recommender)

Percieved Accuracy
W. l. has more movies that you find appealing? (Q17 +)
W. l. has more movies that might be among the best movies you see in the next year? (Q19 +)
W. l. has more obviously bad movie recommendations for you? (Q6 -)
W. r. does a better job of putting better movies on the left? (Q9 +)
Diversity
W. l. has more movies that are similar to each other? (Q22 -)
W. l. has a more varied selection of movies? (Q7 +)
W. l. has movies that match a wider variety of moods? (Q13 +)
W. l. would suit a broader set of tastes? (Q2 +)
Understands Me
W. r. better understands your taste in movies? (Q12 +)
W. r. would you trust more to provide you with recommendations? (Q18 +)
W. r. seems more personalized to your movie taste? (Q14 +)
W. r. more represents mainstream tastes instead of your own? (Q3 -)
Satisfaction
W. r. would better help you find movies to watch? (Q8 +)
W. r. would you be more likely to recommend to your friends? (Q16 +)
W. l. of recommendations do you find more valuable? (Q11 +)
W. r. would you rather have as an app on your mobile phone? (Q20 +)
W. r. would better help to pick satisfactory movies? (Q1 +)
Novelty
W. l. has more movies you do not expect? (Q21 +)
W. l. has more movies that are familiar to you? (Q4 -)
W. l. has more pleasantly surprising movies? (Q5 +)
W. l. has more movies you would not have thought to consider to watch? (Q10 +)
W. l. provides most new suggestions? (Q15 +)

Table 9: Results of the user study with respect to the five tested perceived
quality criteria in a real movie recommender system.

feature
name

feature
type

Relevance Diversity
Understands

me
Satisfaction Novelty

tag metadata 0.2632 0.1625 0.3133 0.2514 0.0577

genre metadata 0.2526 0.2857 0.2410 0.2404 0.1538

i-vector audio 0.1263 0.1875 0.0361 0.1093 0.2115

BLF audio 0.0316 0.1250 0.0120 0.0601 0.0769

deep visual 0.2421 0.1750 0.3253 0.2459 0.1923

AVF visual 0.0842 0.0625 0.0723 0.0929 0.3077
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