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ABSTRACT
Deep neural networks (DNNs) are universal estimators that have
achieved state-of-the-art performance in a broad spectrum of classi-
fication tasks, opening new perspectives for many applications. One
of them is addressing ensemble learning. In this paper, we introduce
a set of deep learning techniques for ensemble learning with dense,
attention, and convolutional neural network layers. Our approach
automatically discovers patterns and correlations between the deci-
sions of individual classifiers, therefore, alleviating the difficulty of
building such architectures. To assess its robustness, we evaluate
our approach on two complex data sets that target different per-
spectives of predicting the user perception of multimedia data, i.e.,
interestingness and violence. The proposed approach outperforms
the existing state-of-the-art algorithms by a large margin.

CCS CONCEPTS
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1 INTRODUCTION
Ensemble learning has a successful history in the research commu-
nity in general and in machine learning in particular [18, 33, 37]. An
ensemble is composed of a set of individual component classifiers
characterized by high diversity, with an inherent domain of compe-
tence, and a learning or combination algorithm, that creates a new
output based on the individual outputs of classifiers. It provides a
late fusion scheme based on a collection of systems. The goal of
ensembling is to obtain a strong learner based on the experience of
the myriad of classifiers it incorporates. This approach has been em-
pirically demonstrated to outperform most state-of-the-art learners
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in many benchmark campaigns, both for general tasks, e.g., classifi-
cation problems [3, 30], and for domain specific applications, e.g.,
memorability, violence and interestingness prediction [2, 6, 7, 26].

Recently, deep neural networks have become vital tools for en-
abling effective learning in a broad array of applications [14, 22,
23, 36]. One of the consolidated findings of state-of-the-art deep
learning architectures [13, 20, 28, 32] is that they are able to dis-
cover intricate structures in vast data sets, due to their superior
representation capabilities for high-dimensional data, and jointly,
with their classifying capabilities, dramatically outperforming con-
ventional descriptors and classifiers. Addressing ensembling with
deep learning approaches is an open research problem that has not
seen too much progress in the research community.

Ensemble systems have more recently attained state-of-the-art
results in several tasks linked with the prediction of subjective
human perception of visual data, such as the prediction of vi-
sual interest [9, 34], the prediction of media memorability [2, 5],
classification of violent videos [7, 29] or emotional content analy-
sis [8, 31]. For a more comprehensive view of ensembling methods
and their applications, the reader is referred to the following survey
papers [12, 19, 27]. Given a probability on a hypothesis, the ensem-
ble mechanism could be a majority voting, weighting or statistical
scheme, or more intricate approaches such as the use of hierarchical
or network architectures.

In this article, we introduce a deep ensembling architecture—a
deep learning-based approach, designed to discover patterns and
correlations between the decisions of individual classifiers. With
the help of dense, attention, and convolutional layers, we aim to
model the bias learned by each classifier and the correlations be-
tween biases to improve the overall performance of the ensembling
system. The contribution beyond state of the art can be summarized
with the following: (i) We develop and implement an ensembling
method that uses deep neural network models with dense, con-
volutional and attention layers to achieve system fusion; (ii) We
propose a novel input decoration scheme that transforms the input
into a matrix representation that takes into account the correlations
between inducers, specifically designed for convolutional layers;
(iii) We solve with our approach two difficult scenarios that target
the prediction of user perception of multimedia data, i.e., inter-
estingness and violence prediction. To the best of our knowledge,
these approaches are not explored in the literature, current systems
focusing on statistical or traditional fusion architectures.

To show the benefits of the ensemble approach and evaluate
our methodology, we provide comprehensive experiments on a
series of intricate tasks that target subjective user perception of
visual data, i.e., interestingness and violence prediction. We com-
pare our proposed ensemble system with classical approaches and
state-of-the-art methods that incorporate these approaches. Ex-
periments show that our approach provides a significant boost in
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performance, outperforming the state-of-the-art approaches by a
large margin. Distantly related approaches of ensembling via deep
learning center around developing an ensemble of deep neural net-
work features [17, 35]. Despite sharing some similarities with our
method, these approaches do not use the scores yielded by inducers,
rather they perform an early fusion at features level.

The remainder of the paper proceeds as follows. We first present
our proposed deep ensembling architectures in Section 2. Then,
we present the experimental setup and the results and analysis in
Section 3 and Section 4, respectively. Lastly, Section 5 presents our
conclusions and discusses future work.

2 PROPOSED METHOD
The standard ensembling problem can be formulated as following.
Given a set ofn instances andm representationsD = {(xi ,yi )}, |D | =

n, xi ∈ Rm,yi ∈ R, where xi and yi represent the input vector
for the sample i , and the output vector of classifier i , respectively.
An ensemble setting uses an aggregation function that aggregates
k classifiers { f0, ..., fk−1} toward providing a single prediction:
ŷi = φ(xi ) = G(f0, ..., fk−1), where ŷi ∈ Z and G(.) represents
the aggregation function.

In this context, we propose several deep learning-based ensem-
bling architectures for data retrieval. That is, given multiple video
or image inputs, our goal is to perform retrieval while combining
the information from multiple learners in a beneficial way. Our as-
sumption is that, by performing the aggregation via a deep neural
network architecture, we can model the bias learned by each sys-
tem and the correlations between the biases more efficiently, thus
allowing us to perform retrieval robustly. To this end, we employ
simple, yet efficient deep neural network architectures, based on
dense (Section 2.1), attention (Section 2.2), and convolutional layers
(Section 2.3), respectively.

2.1 Dense Architecture
Considering dense architectures are universal approximators, capa-
ble of learning any function, we build the first ensemble network by
stacking such dense layers. The diagram of the implemented dense
architecture is presented in Figure 1a. Firstly, we start by defining a
set of rules to build network architectures, namely: (i) varying the
numbers of dense layers, i.e., {5, 10, 15, 20, 25}; (ii) varying the num-
bers of neurons for each dense layer, i.e., {25, 50, 500, 1000, 2000, 50-
00}; (iii) including or excluding batch normalization layers. In this
context, we start with a minimum of 5 dense layers and 25 neurons
and we create end-to-end architectures in a progressive order, sim-
plest models first. Each combination of parameters is trained and
evaluated until the most effective architecture is found.

2.2 Dense Architecture with Attention
To further improve the precision of the ensemble architecture, we
further include soft attention maps with values between 0 and 1, to
our baseline ensemble policies, by learning the attention parameters
in an end-to-end manner, helping the networks to focus on key
elements of the input. A diagram of the proposed implementation
is presented in Figure 1b. Let xi ∈ Rk be the input vector, z ∈ Rk

a feature map vector, a ∈ [0, 1]k a soft attention vector, д ∈ Rk

an attention estimator, and fϕ (xi ) and attention network with

parameters ϕ. The attention is implemented as a = fϕ (xi ),д = a⊙z
where ⊙ is element-wise multiplication, while z is an output of
another neural network fϕ (xi ) with parameters ϕ.

2.3 Dense Architecture with Convolutions
The final proposed architecture includes the addition of convolu-
tional layers and a technique for input decoration, allowing us to
disclose local relationships between locally adjacent scores yielded
by the inducers incorporated in the ensemble setting. Convolutional
layers are able to accurately explore local relationships in different
mathematical spaces. However, given the intrinsic randomness of
the order of the input vector xi and, therefore, the lack of any obvi-
ous localized correlation between adjacent elements of the vector,
we chose to deploy an input decoration scheme that would allow
the use of convolutional layers.

A diagram of the proposed convolutional architecture is pre-
sented in Figure 1c. Given the xi = [s0,i ...sk−1,i ] input vector for
a sample i , representing the output scores of each classifier, we
choose to decorate each element of this vector with output scores
and correlation scores from the most similar systems with respect
to output. Therefore, given the matrix Y = [y0...yk−1] where each
of the yi vectors represents the scores given by the classifier fi for
all the samples, we calculate the similarity between each classifier
via the Pearson’s correlation coefficient [25]. The final decorated
version of the input is represented in equation 1, where, for each
sample i , the pairs (c0, j , r0, j ) represent the output score (c) and
Pearson’s correlation score (r ) for the most similar system with
any given system score sj , the pairs (c1, j , s1, j ) represent the second
most similar system, and so on.

xdi =


r3,0 c0,0 r0,0 r3,k−1 c0,k−1 r0,k−1
c3,0 s0 c1,0 ... c3,k−1 sk−1 c1,k−1
r2,0 c2,0 r1,0 r2,k−1 c2,k−1 r1,k−1

 (1)

We use the newly created xdi vector as input for our dense archi-
tecture with one convolutional layer. The convolutional layer has
3 × 3 size filters, therefore having 10 trainable parameters for each
filter in the layer, and a stride of 3, followed by an average pooling
layer. We tested three filter configurations for the convolutional
layer: 1, 5, or 10 filters, thus allowing the network to perform a
more extensive array of similarity analysis.

2.4 Ensembling
To perform the actual ensembling, we employ the following steps.
Firstly, for the individual xi vectors, we create the decorated xdi
vectors, and normalize the two collections of vectors. Then, using
the xi vectors as input, we start the processing of dense architec-
tures with 5 layers, 25 neurons per layer, followed by a search for
the best performing dense architecture by varying the network
model size, according to the values presented in Section 2.1. The
best performing dense model is augmented with an attention layer,
while keeping the xi vectors as input. The final step involves the de-
ployment of convolutional layers. Using the best performing dense
architecture and the xdi vectors as input, we search for the best
performing convolutional architecture by varying the number of
filters applied to the layers, according to the values presented in Sec-
tion 2.3. The fusion results correspond to the output of the networks.
During the dense network search (see Section 2.1), we evaluate 60
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Figure 1: Illustration of the proposed deep ensembling methods: variable number of dense layers (L), variable number of
neurons per dense layer (N), and variable number of filters for the convolutional layer (F).

dense networks for each data set. Each network is trained for 200
epochs, with a batch size of 64, using an initial learning rate of 0.01
optimized via the Adam optimizer [15], with β1 = 0.9, β2 = 0.999,
and ϵ = 1e − 08. The loss function for all tested models is binary
cross-entropy.

3 EXPERIMENTAL SETUP
3.1 Data Sets
To validate the solutions, we conducted extensive experiments on
two intricate benchmark data sets, namely the Predicting Media
Interestingness, and Affective Impact of Movies. These data were
validated during the yearly MediaEval benchmarking initiative for
multimedia evaluation campaign. All the data comes with high-
quality annotations provided by experts.

TheMediaEval 2017 PredictingMedia Interestingness data set [9]
(INT2017 ) provides data for two scenarios: (i) prediction of image
visual interestingness (INT2017.Image), and (ii) prediction of video
visual interestingness (INT2017.Video), each of them containing
9,831 individual key-frames and video segments respectively.

The MediaEval 2015 Affective Impact of Movies (VSD2015.Video)
data set [29] is composed of 31 full movies, 86 YouTube videos and
10,900 short clips extracted from 199 movies of various genres (up
to 96 hours), with the benchamrking scenario of automatically clas-
sifying video content as violent or non-violent, using the definition
of violence provided by the authors [29].

We have considered all the systems participating in the bench-
marking campaigns, namely 33 systems for the INT2017.Image, 42
systems for the INT2017.Video, and 48 systems for the VSD2015.Video.
Inducers ranged from SVMs, Naive Bayes, LDA, ensembles, to DNNs
and CNN representations. For a detailed description, the reader may
access the participants working notes here1.

3.2 Evaluation
Ensembling requires typically tens of systems to be able to boost
the performance. In practice, is basically impossible to implement
or retrieve such a large number of systems from the authors, con-
sidering also re-running them in the very same conditions. There
are also no best practices in this respect in the literature. The only
approaches that do so use a very reduced number of inducers, e.g.,
less than 10 [21]. We therefore adopted a compromise that uses all
the system runs submitted to the respective benchmarking com-
petitions, and experimenting solely on the test data, as we do not
1http://ceur-ws.org/Vol-1984/, http://ceur-ws.org/Vol-1436/.

have access to the development systems. These test data system
runs were provided by the task organizers.

The evaluation is carried out using the following test data split
scenarios: (i) 75% training and 25% testing (RSKF75), and (ii) 50%
training and 50% testing (RSKF50). Split samples are randomized,
and this action is performed multiple times to obtain a thorough
coverage. In the end, 100 partitions are generated. The metrics are
computed as average values over these partitions.We stress that this
approach is even more disadvantageous than training the systems
on the entire development data, because, the number of items is
significantly lower. An empiric test performed on the systems our
team submitted to the Interestingness task [4] shows a dramatic
drop in performance, i.e., 46.85% for the INT2017.Image task and
57.1% on the INT2017.Video task, supporting the assumption that
training in this setup is disadvantageous.

For assessing performance, we use the official metrics released
by the authors of the data (on which the inducers were optimized),
namely: (i) for the INT2017 data set, we use the Mean Average
Precision over the 10 highest ranked items (mAP@10), and (ii) for
the VSD2015.Video data set, the Mean Average Precision (mAP).

4 RESULTS AND DISCUSSION
This section presents the results of the best-performing architec-
tures: we present the baseline and state-of-the-art systems that will
be used as comparison (Section 4.1), and we present our approaches
(Section 4.2). Overall results are summarized in Table 1.

4.1 Baseline Systems
Best performers at MediaEval. For reference, we present the best-
performing systems for each of the three data/scenarios, as released
during the MediaEval benchmarking. They will represent, both one
of the inducers for our algorithms, and a baseline for comparing the
results we achieved. The three systems are the following: Permadi
et al. [26] for the INT2017.Image data, with a mAP@10 of 0.1385,
Ben-Ahmed et al. [1] for the INT2017.Video data, with a mAP@10
of 0.0827 and Dai et al. [7] for the VSD2015.Video data, with a mAP
of 0.296.

Best systems from the literature. Another class of systems that
will be used as comparison baselines is represented by approaches
published outside the MediaEval benchmark competition, but that
use the same data sets and provide state-of-the-art results. The
three methods used are the following: Parekh et al. [24] for the
INT2017.Image data, with a mAP@10 of 0.156, Wang et al. [34] for



Table 1: Results on the three scenarios: INT2017.Image, INT2017.Video and VSD2015.Video. We present the best results for the
baseline systems (b), baseline ensembling systems (e), and the three proposed architectures (proposed), for each test data split
scenario (the standard dev/test used by individual systems, RSKF75 or RSKF50 used in this evaluation).

INT2017.Image INT2017.Video VSD2015.Video
System Split mAP@10 System Split mAP@10 System Split mAP
Permadi et al. [26] (b) dev/test 0.1385 Ben-Ahmed et al. [1] (b) dev/test 0.0827 Dai et al. [7] (b) dev/test 0.296
Parekh et al. [24] (b) dev/test 0.156 Wang et al. [34] (b) dev/test 0.093 Li et al. [21] (b) dev/test 0.303

BAda [10] (e) RSKF50 0.1523 BAda [10] (e) RSKF50 0.0961 BGrad [11] (e) RSKF50 0.3521
RSKF75 0.1674 RSKF75 0.1129 RSKF75 0.392

Dense (proposed) RSKF50 0.2316 Dense (proposed) RSKF50 0.1563 Dense (proposed) RSKF50 0.6192
RSKF75 0.3355 RSKF75 0.2677 RSKF75 0.6341

Attention (proposed) RSKF50 0.2399 Attention (proposed) RSKF50 0.1668 Attention (proposed) RSKF50 0.6228
RSKF75 0.3389 RSKF75 0.2750 RSKF75 0.6486

Convolutional (proposed) RSKF50 0.2293 Convolutional (proposed) RSKF50 0.1692 Convolutional (proposed) RSKF50 0.6281
RSKF75 0.3436 RSKF75 0.2799 RSKF75 0.6471

* Please note that a direct comparison between the individual systems and the ensembling should be carried out cautiously, as the data are different. However, as presented in the article,
this gives a clear indicator of the boosting performance.

the INT2017.Video data, with a mAP@10 of 0.093 and Li et al. [21]
fot the VSD2015.Video data, with a mAP of 0.303.

Ensembling systems. The final class of baseline approaches con-
sists of classical ensemblingmethods, that use fusion strategies such
as: fusion of the scores by taking the minimum (LFMin), maximum
(LFMax), combination of min-max (LFMinMax), average (LFAvg),
median (LFMed), and weighted (LFWeight) of the scores of all the in-
dividual systems [16] and two boosting approaches: AdaBoost [10]
(BAda) and Gradient Boosting [11] (BGrad). In creating these ensem-
bles, we used as inducers the same systems presented in Section 3.1
and the same evaluation methods presented in Section 3.2 therefore,
creating an accurate base for comparing our methods.

4.2 Proposed Systems
The results are summarized in Table 1. The proposed approaches
surpass both the two best performers from the literature and the
baseline fusion methods. As expected, results for the RSKF75 split
are better than the ones achieved on the RSKF50 split, due to the
more training data. The results show that the proposed approaches
clearly outperform all three baseline runs, under all three proposed
architectures. While the dense architectures outperformed the base-
lines, the best performance is achieved with the attention and con-
volutional architectures.

For the INT2017.Image data, the best performing dense archi-
tecture uses 10 dense layers and 1,000 neurons per layer, without
batch normalization, achieving a mAP@10 of 0.3355 for the RSKF75
split and of 0.2316 for RSKF50. The addition of attention layer fur-
ther increased the results, the best performing architecture with
the RSKF50 split achieving a mAP@10 of 0.2399. The same is true
for the convolutional layers, where an architecture with 5 filters
achieved the best results for the RSKF75 split, namely 0.3436. For
the INT2017.Video data, the best performance with a dense archi-
tecture is achieved using 25 layers and 2,000 neurons per layer,
with batch normalization, yielding a mAP@10 of 0.2677 and 0.1562,
for RSKF75 and RSKF50, respectively. While the introduction of an
attention layer does improve these scores, the best results overall
are obtained with the convolutional layers. A different setup per-
forms best for each of the two splits, i.e., a layer with 5 filters for

the RSKF75 split, achieving a mAP@10 of 0.2799, and a layer with
10 filters for the RSKF50 split, with a mAP@10 of 0.1692.

Finally, for the VSD2015.Video data, an architecture with 5 dense
layers and 500 neurons per layer achieved the highest performance
for the dense architecture, with a mAP of 0.6341 for the RSKF75
split and of 0.6192 for the RSKF50. The best results for the RSKF75
split are obtained with an attention architecture, mAP of 0.6486,
while the best results for the RSKF50 split are obtained with a
convolutional architecture with 10 filters, mAP of 0.6281. While the
increase in performance brought by the addition of attention and
convolutional layers over the dense architecture is not very big, it
is worth noting that except for the INT2017.Image data and using
the convolutional architecture on the RSKF50 setup, the results are
constantly better when these layers are added.

5 CONCLUSIONS
In this paper, we proposed a deep ensembling approach that em-
ploys architectures based on dense, attention, and convolutional
layers. The main advantage of the proposed architecture is in its
ability to automatically discover correlations between the inducer
systems. Tested in two difficult scenarios, i.e., for interestingness
and violence prediction, results proved a great improvement com-
pared to the inducer systems and state-of-the-art approaches, with
many instances reaching at least double the mAP performance, e.g.,
from 0.156 to 0.3436, and from 0.09 to 0.2799 on the image and video
prediction of interestingness, and from 0.303 to to 0.6486 on the
violence prediction.

As future work, we propose to further experiment with the
impact of the number and diversity of inducers on the ensembling
results and with combining attention and convolution approaches.
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